Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers
暂无分享,去创建一个
[1] M. Waldschmidt. Minorations de Combinaisons Linéaires de Logarithmes de Nombres Algébriques , 1993, Canadian Journal of Mathematics.
[2] R. C. Baker,et al. EXPONENTIAL DIOPHANTINE EQUATIONS (Cambridge Tracts in Mathematics 87) , 1987 .
[3] Kenneth A. Ribet,et al. On modular representations of $$(\bar Q/Q)$$ arising from modular forms , 1990 .
[4] Alain Kraus,et al. Sur l'équation a3 + b3 = cp , 1998, Exp. Math..
[5] H. Lenstra,et al. Algorithms in algebraic number theory , 1992, math/9204234.
[6] C. Siegel,et al. Abschätzung von Einheiten , 1979 .
[7] Attila Pethö,et al. Diophantine properties of linear recursive sequences II. , 1998 .
[8] A. Wiles,et al. Ring-Theoretic Properties of Certain Hecke Algebras , 1995 .
[9] H. London,et al. On Fibonacci and Lucas Numbers which are perfect powers , 1969 .
[10] J. Cohn. Lucas and fibonacci numbers and some diophantine Equations , 1965, Proceedings of the Glasgow Mathematical Association.
[11] A. Pethö. Perfect powers in second order linear recurrences , 1982 .
[12] M. Wodzicki. Lecture Notes in Math , 1984 .
[13] W. Ljunggren. On the Diophantine Equation $Ax^4-By^2=C$, ($C=1,4$). , 1967 .
[14] J. Lesage. Différence entre puissances et carrés d'entiers , 1998 .
[15] Henri Darmon,et al. Winding quotients and some variants of Fermat's Last Theorem. , 1997 .
[16] W. Narkiewicz. Elementary and Analytic Theory of Algebraic Numbers , 1990 .
[17] M. Le,et al. On Cohn's conjecture concerning the diophantine equation¶x2+ 2m = yn , 2002 .
[18] M. Mignotte,et al. On the diophantine equations x2 + 74 = y5 and x2 + 86 = y5 , 1996, Glasgow Mathematical Journal.
[19] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[20] E. V. Flynn,et al. Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2: Weddle's surface , 1996 .
[21] Small Prime Powers in the Fibonacci Sequence , 2001, math/0110150.
[22] E. Landau. Verallgemeinerung eines Polyaschen Satzes auf algebraische Zahlkörper , 1918 .
[23] Frits Beukers,et al. On the generalized Ramanujan-Nagell equation I , 1981 .
[24] Gisbert Wüstholz,et al. Logarithmic forms and group varieties. , 1993 .
[25] A. Wiles. Modular Elliptic Curves and Fermat′s Last Theorem(抜粋) (フェルマ-予想がついに解けた!?) , 1995 .
[26] Guillaume Hanrot,et al. Solving Thue equations without the full unit group , 2000, Math. Comput..
[27] J. Cremona. Algorithms for Modular Elliptic Curves , 1992 .
[28] R. Taylor,et al. On the modularity of elliptic curves over 𝐐: Wild 3-adic exercises , 2001, Journal of the American Mathematical Society.
[29] Jean-Pierre Serre. Sur les répresentations modulaires de degré 2 de Gal $$ (\bar{Q}/Q) $$ , 2000 .
[30] Maurice Mignotte,et al. Classical and modular approaches to exponential Diophantine equations II. The Lebesgue–Nagell equation , 2004, Compositio Mathematica.
[31] Michael Stoll. On the arithmetic of the curves y² = xˡ + A and their Jacobians , 1998 .
[32] N. Smart. The Algorithmic Resolution of Diophantine Equations , 1999 .
[33] Guillaume Hanrot,et al. Solving Thue Equations of High Degree , 1996 .
[34] Michel Waldschmidt,et al. Diophantine Approximation on Linear Algebraic Groups , 2000 .
[35] Edward F. Schaefer. 2-Descent on the Jacobians of Hyperelliptic Curves , 1995 .
[36] J. Cremona,et al. On the Diophantine equation $x^2 + 7 = y^m$ , 2003 .
[37] Michel Laurent,et al. Formes linéaires en deux logarithmes et déterminants d′interpolation , 1995 .
[38] E. Matveev,et al. An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers , 1998 .
[39] Michael A. Bennett,et al. Rational Approximation to Algebraic Numbers of Small Height : the Diophantine Equation Jax N ? by N J = 1 , 2007 .
[40] Michael A. Bennett,et al. Ternary Diophantine Equations via Galois Representations and Modular Forms , 2004, Canadian Journal of Mathematics.
[41] Paul Voutier,et al. An effective lower bound for the height of algebraic numbers , 2012, 1211.3110.
[42] J. H. E. Cohn,et al. On Square Fibonacci Numbers , 1964 .
[43] M. Mignotte,et al. A corollary to a theorem of Laurent-Mignotte-Nesterenko , 1998 .
[44] T. N. Shorey,et al. On the number of solutions of the generalized Ramanujan-Nagell equation , 2001 .
[45] T. N. Shorey,et al. THE EQUATION XN - 1/X - 1 = YQ HAS NO SOLUTION WITH X SQUARE , 1999 .
[46] Michael A. Bennett,et al. On the Diophantine equation , 2004 .
[47] Karim Belabas,et al. User’s Guide to PARI / GP , 2000 .
[48] D. B. Meronk,et al. Linear forms in the logarithms of three positive rational numbers , 1997 .
[49] Michel Laurent,et al. Linear forms in two logarithms and interpolation determinants II , 1994 .
[50] B. Sury. On the Diophantine equation x2 + 2 = yn , 2000 .
[51] J. Cohn. Perfect Pell Powers , 1996, Glasgow Mathematical Journal.
[52] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[53] G. Frey. Links between solutions of A−B=C and elliptic curves , 1989 .
[54] Y. Bugeaud,et al. Bounds for the solutions of unit equations , 1996 .
[55] Y. Bugeaud,et al. Bounds for the solutions of Thue-Mahler equations and norm form equations , 1996 .
[56] T. N. Shorey,et al. On the Diophantine equation $ax^{2t}+bx^ty+cy^2=d$ and pure powers in recurrence sequences. , 1983 .
[57] Michael Stoll,et al. Implementing 2-descent for Jacobians of hyperelliptic curves , 2001 .
[58] B. Mazur,et al. Rational isogenies of prime degree , 1978 .
[59] A. Kraus,et al. Courbes de Fermat: résultats et problèmes , 2002 .
[60] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[61] Guillaume Hanrot,et al. Existence of Primitive Divisors of Lucas and Lehmer Numbers , 2001 .
[62] Neville Robbins. ON FIBONACCI NUMBERS WHICH ARE POWERS: I I , 1983 .
[63] T. N. Shorey,et al. Integers with identical digits , 1989 .