Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers

This is the first in a series of papers whereby we combine the classical approach to exponential Diophantine equations (linear forms in logarithms, Thue equations, etc.) with a modular approach based on some of the ideas of the proof of Fermat's Last Theorem. In this paper we give new improved bounds for linear forms in three logarithms. We also apply a combination of classical techniques with the modular approach to show that the only perfect powers in the Fibonacci sequence are 0, 1, 8 and 144 and the only perfect powers in the Lucas sequence are 1 and 4.

[1]  M. Waldschmidt Minorations de Combinaisons Linéaires de Logarithmes de Nombres Algébriques , 1993, Canadian Journal of Mathematics.

[2]  R. C. Baker,et al.  EXPONENTIAL DIOPHANTINE EQUATIONS (Cambridge Tracts in Mathematics 87) , 1987 .

[3]  Kenneth A. Ribet,et al.  On modular representations of $$(\bar Q/Q)$$ arising from modular forms , 1990 .

[4]  Alain Kraus,et al.  Sur l'équation a3 + b3 = cp , 1998, Exp. Math..

[5]  H. Lenstra,et al.  Algorithms in algebraic number theory , 1992, math/9204234.

[6]  C. Siegel,et al.  Abschätzung von Einheiten , 1979 .

[7]  Attila Pethö,et al.  Diophantine properties of linear recursive sequences II. , 1998 .

[8]  A. Wiles,et al.  Ring-Theoretic Properties of Certain Hecke Algebras , 1995 .

[9]  H. London,et al.  On Fibonacci and Lucas Numbers which are perfect powers , 1969 .

[10]  J. Cohn Lucas and fibonacci numbers and some diophantine Equations , 1965, Proceedings of the Glasgow Mathematical Association.

[11]  A. Pethö Perfect powers in second order linear recurrences , 1982 .

[12]  M. Wodzicki Lecture Notes in Math , 1984 .

[13]  W. Ljunggren On the Diophantine Equation $Ax^4-By^2=C$, ($C=1,4$). , 1967 .

[14]  J. Lesage Différence entre puissances et carrés d'entiers , 1998 .

[15]  Henri Darmon,et al.  Winding quotients and some variants of Fermat's Last Theorem. , 1997 .

[16]  W. Narkiewicz Elementary and Analytic Theory of Algebraic Numbers , 1990 .

[17]  M. Le,et al.  On Cohn's conjecture concerning the diophantine equation¶x2+ 2m = yn , 2002 .

[18]  M. Mignotte,et al.  On the diophantine equations x2 + 74 = y5 and x2 + 86 = y5 , 1996, Glasgow Mathematical Journal.

[19]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[20]  E. V. Flynn,et al.  Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2: Weddle's surface , 1996 .

[21]  Small Prime Powers in the Fibonacci Sequence , 2001, math/0110150.

[22]  E. Landau Verallgemeinerung eines Polyaschen Satzes auf algebraische Zahlkörper , 1918 .

[23]  Frits Beukers,et al.  On the generalized Ramanujan-Nagell equation I , 1981 .

[24]  Gisbert Wüstholz,et al.  Logarithmic forms and group varieties. , 1993 .

[25]  A. Wiles Modular Elliptic Curves and Fermat′s Last Theorem(抜粋) (フェルマ-予想がついに解けた!?) , 1995 .

[26]  Guillaume Hanrot,et al.  Solving Thue equations without the full unit group , 2000, Math. Comput..

[27]  J. Cremona Algorithms for Modular Elliptic Curves , 1992 .

[28]  R. Taylor,et al.  On the modularity of elliptic curves over 𝐐: Wild 3-adic exercises , 2001, Journal of the American Mathematical Society.

[29]  Jean-Pierre Serre Sur les répresentations modulaires de degré 2 de Gal $$ (\bar{Q}/Q) $$ , 2000 .

[30]  Maurice Mignotte,et al.  Classical and modular approaches to exponential Diophantine equations II. The Lebesgue–Nagell equation , 2004, Compositio Mathematica.

[31]  Michael Stoll On the arithmetic of the curves y² = xˡ + A and their Jacobians , 1998 .

[32]  N. Smart The Algorithmic Resolution of Diophantine Equations , 1999 .

[33]  Guillaume Hanrot,et al.  Solving Thue Equations of High Degree , 1996 .

[34]  Michel Waldschmidt,et al.  Diophantine Approximation on Linear Algebraic Groups , 2000 .

[35]  Edward F. Schaefer 2-Descent on the Jacobians of Hyperelliptic Curves , 1995 .

[36]  J. Cremona,et al.  On the Diophantine equation $x^2 + 7 = y^m$ , 2003 .

[37]  Michel Laurent,et al.  Formes linéaires en deux logarithmes et déterminants d′interpolation , 1995 .

[38]  E. Matveev,et al.  An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers , 1998 .

[39]  Michael A. Bennett,et al.  Rational Approximation to Algebraic Numbers of Small Height : the Diophantine Equation Jax N ? by N J = 1 , 2007 .

[40]  Michael A. Bennett,et al.  Ternary Diophantine Equations via Galois Representations and Modular Forms , 2004, Canadian Journal of Mathematics.

[41]  Paul Voutier,et al.  An effective lower bound for the height of algebraic numbers , 2012, 1211.3110.

[42]  J. H. E. Cohn,et al.  On Square Fibonacci Numbers , 1964 .

[43]  M. Mignotte,et al.  A corollary to a theorem of Laurent-Mignotte-Nesterenko , 1998 .

[44]  T. N. Shorey,et al.  On the number of solutions of the generalized Ramanujan-Nagell equation , 2001 .

[45]  T. N. Shorey,et al.  THE EQUATION XN - 1/X - 1 = YQ HAS NO SOLUTION WITH X SQUARE , 1999 .

[46]  Michael A. Bennett,et al.  On the Diophantine equation , 2004 .

[47]  Karim Belabas,et al.  User’s Guide to PARI / GP , 2000 .

[48]  D. B. Meronk,et al.  Linear forms in the logarithms of three positive rational numbers , 1997 .

[49]  Michel Laurent,et al.  Linear forms in two logarithms and interpolation determinants II , 1994 .

[50]  B. Sury On the Diophantine equation x2 + 2 = yn , 2000 .

[51]  J. Cohn Perfect Pell Powers , 1996, Glasgow Mathematical Journal.

[52]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[53]  G. Frey Links between solutions of A−B=C and elliptic curves , 1989 .

[54]  Y. Bugeaud,et al.  Bounds for the solutions of unit equations , 1996 .

[55]  Y. Bugeaud,et al.  Bounds for the solutions of Thue-Mahler equations and norm form equations , 1996 .

[56]  T. N. Shorey,et al.  On the Diophantine equation $ax^{2t}+bx^ty+cy^2=d$ and pure powers in recurrence sequences. , 1983 .

[57]  Michael Stoll,et al.  Implementing 2-descent for Jacobians of hyperelliptic curves , 2001 .

[58]  B. Mazur,et al.  Rational isogenies of prime degree , 1978 .

[59]  A. Kraus,et al.  Courbes de Fermat: résultats et problèmes , 2002 .

[60]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[61]  Guillaume Hanrot,et al.  Existence of Primitive Divisors of Lucas and Lehmer Numbers , 2001 .

[62]  Neville Robbins ON FIBONACCI NUMBERS WHICH ARE POWERS: I I , 1983 .

[63]  T. N. Shorey,et al.  Integers with identical digits , 1989 .