On the properties and tribological behaviors of P/M iron based composites reinforced with ultrafine particulates

Abstract This paper describes the changes of structure, some mechanical and tribological properties of P/M iron based composites reinforced with ultrafine additives. Nanocrystalline additives of oxides, borides and diamond in the base material allow increasing the compressive strength and the tensile strength 1.5–3 times. An introduction of 0.2–0.3 wt% of ultrafine-grained diamonds, 0.5 wt% of chromium borides and 0.2–0.5 wt% of alumina or oxides mixture provides the best results. The coefficients of friction of MMCs containing nanocrystalline particulates are reduced 2–3 times compared to the base P/M material while the critical seizure pressure is enhanced 2–5 times. The wear resistance of the MMCs increases 2–4 times.

[1]  J. Tu,et al.  Preparation and properties of TiB2 nanoparticle reinforced copper matrix composites by in situ processing , 2002 .

[2]  C. Rhee,et al.  Dispersion of ultrafine SiC particles in molten Al-12Si alloy , 2011 .

[3]  W. B. Johnson,et al.  Diamond/Al metal matrix composites formed by the pressureless metal infiltration process , 1993 .

[4]  J. W. Kaczmar,et al.  The production and application of metal matrix composite materials , 2000 .

[5]  M. Streckova,et al.  Preparation, chemical and mechanical properties of microcomposite materials based on Fe powder and phenol-formaldehyde resin , 2012 .

[6]  K. Hanada,et al.  Tribological properties of Al–Si–Cu–Mg alloy-based composite-dispersing diamond nanocluster , 2002 .

[7]  Randall M. German,et al.  Powder metal technologies and applications , 1998 .

[8]  A. Vul,et al.  The structure of diamond nanoclusters , 1999 .

[9]  S. F. Moustafa,et al.  Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing , 2009 .

[10]  B. S. Murty,et al.  Hot hardness behaviour of ultrafine grained ferritic oxide dispersion strengthened alloys prepared by mechanical alloying and spark plasma sintering , 2012 .

[11]  K. Chawla,et al.  Metal Matrix Composites , 2006 .

[12]  Mario Rosso,et al.  Ceramic and metal matrix composites: Routes and properties , 2006 .

[13]  J. Wert,et al.  Microstructures of friction stir weld joints between an aluminium-base metal matrix composite and a monolithic aluminium alloy , 2003 .

[14]  Yong Li,et al.  Creep behavior of an Al-6061 metal matrix composite reinforced with alumina particulates , 1997 .

[15]  Anthony Kelly,et al.  Comprehensive composite materials , 1999 .

[16]  G. Wilde,et al.  Grain boundary diffusion of Fe in ultrafine-grained nanocluster-strengthened ferritic steel , 2011 .

[17]  M. Karbalaie,et al.  Effect of alumina particle size and thermal condition of casting on microstructure and mechanical properties of stir cast Al–Al2O3 composites , 2011 .

[18]  V. Dolmatov Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications , 2007 .

[19]  Z. Ahmad,et al.  The Effects of Al2O3 Amount on the Microstructure and Properties of Fe-Cr Matrix Composites , 2010 .

[20]  Tongsheng Li,et al.  The friction and wear properties of polytetrafluoroethylene filled with ultrafine diamond , 2006 .

[21]  V. F. Petrunin,et al.  Structure and properties of fine metallic particles , 1981 .

[22]  D. Miracle Metal matrix composites – From science to technological significance , 2005 .

[23]  Q. Y. Chen,et al.  Spherical nanometer-sized diamond obtained from detonation , 2000 .

[24]  Sie Chin Tjong,et al.  Microstructural and mechanical characteristics of in situ metal matrix composites , 2000 .

[25]  D. Chung,et al.  Silicon carbide whisker copper-matrix composites fabricated by hot pressing copper coated whiskers , 1996 .

[26]  Q. Xue,et al.  Study on the Tribological Properties of Ultradispersed Diamond Containing Soot as an Oil Additive , 1997 .