Reducing the risk of false discovery enabling identification of biologically significant genome-wide methylation status using the HumanMethylation450 array

[1]  Haroon Naeem,et al.  Reducing the risk of false discovery enabling identification of biologically significant genome-wide methylation status using the HumanMethylation450 array , 2014, BMC Genomics.

[2]  Serena G. Liao,et al.  Whole-genome methylation sequencing reveals distinct impact of differential methylations on gene transcription in prostate cancer. , 2013, The American journal of pathology.

[3]  Gianluca Bontempi,et al.  A comprehensive overview of Infinium HumanMethylation450 data processing , 2013, Briefings Bioinform..

[4]  A. Gnirke,et al.  Charting a dynamic DNA methylation landscape of the human genome , 2013, Nature.

[5]  Nathan E Hall,et al.  Exploring the utility of human DNA methylation arrays for profiling mouse genomic DNA. , 2013, Genomics.

[6]  Ruth Pidsley,et al.  A data-driven approach to preprocessing Illumina 450K methylation array data , 2013, BMC Genomics.

[7]  Carolyn J. Brown,et al.  Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array , 2013, Epigenetics & Chromatin.

[8]  Pau Farré,et al.  Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array , 2013, Epigenetics & Chromatin.

[9]  T. Ideker,et al.  Genome-wide methylation profiles reveal quantitative views of human aging rates. , 2013, Molecular cell.

[10]  Martin J. Aryee,et al.  DNA Methylation Alterations Exhibit Intraindividual Stability and Interindividual Heterogeneity in Prostate Cancer Metastases , 2013, Science Translational Medicine.

[11]  P. Deloukas,et al.  A Comparison of the Whole Genome Approach of MeDIP-Seq to the Targeted Approach of the Infinium HumanMethylation450 BeadChip® for Methylome Profiling , 2012, PloS one.

[12]  Mary Goldman,et al.  The UCSC Genome Browser database: extensions and updates 2013 , 2012, Nucleic Acids Res..

[13]  T. Down,et al.  Guthrie card methylomics identifies temporally stable epialleles that are present at birth in humans , 2012, Genome research.

[14]  P. Laird,et al.  Bis-SNP: Combined DNA methylation and SNP calling for Bisulfite-seq data , 2012, Genome Biology.

[15]  R. Lowe,et al.  Report on the Infinium 450k Methylation Array Analysis Workshop , 2012, Epigenetics.

[16]  A. Oshlack,et al.  SWAN: Subset-quantile Within Array Normalization for Illumina Infinium HumanMethylation450 BeadChips , 2012, Genome Biology.

[17]  Ralf Zimmer,et al.  Rigorous assessment of gene set enrichment tests , 2012, Bioinform..

[18]  Peter A. Jones Functions of DNA methylation: islands, start sites, gene bodies and beyond , 2012, Nature Reviews Genetics.

[19]  H. Lähdesmäki,et al.  Overexpression of androgen receptor enhances the binding of the receptor to the chromatin in prostate cancer , 2012, Oncogene.

[20]  A. Costello,et al.  Microscopic assessment of fresh prostate tumour specimens yields significantly increased rates of correctly annotated samples for downstream analysis , 2012, Pathology.

[21]  Dan Wang,et al.  IMA: an R package for high-throughput analysis of Illumina's 450K Infinium methylation data , 2012, Bioinform..

[22]  C. Sotiriou,et al.  Evaluation of the Infinium Methylation 450K technology. , 2011, Epigenomics.

[23]  K. Gunderson,et al.  High density DNA methylation array with single CpG site resolution. , 2011, Genomics.

[24]  M. Esteller,et al.  Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome , 2011, Epigenetics.

[25]  A. Bird,et al.  CpG islands and the regulation of transcription. , 2011, Genes & development.

[26]  Yi-an Chen,et al.  Sequence overlap between autosomal and sex-linked probes on the Illumina HumanMethylation27 microarray. , 2011, Genomics.

[27]  Ryan E. Mills,et al.  Natural genetic variation caused by small insertions and deletions in the human genome. , 2011, Genome research.

[28]  S. Payton Prostate cancer: New insight into mechanisms of castration resistance , 2010, Nature Reviews Urology.

[29]  Jingde Zhu,et al.  Whole-genome DNA methylation profiling using MethylCap-seq. , 2010, Methods.

[30]  D. Altshuler,et al.  A map of human genome variation from population-scale sequencing , 2010, Nature.

[31]  Natalie Jäger,et al.  Genome-wide mapping of DNA methylation: a quantitative technology comparison , 2010, Nature Biotechnology.

[32]  T. Huang,et al.  Profiling DNA Methylomes from Microarray to Genome-Scale Sequencing , 2010, Technology in cancer research & treatment.

[33]  Chia-Lin Wei,et al.  Dynamic changes in the human methylome during differentiation. , 2010, Genome research.

[34]  P. Laird Principles and challenges of genome-wide DNA methylation analysis , 2010, Nature Reviews Genetics.

[35]  B. Korn,et al.  DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells , 2010, Aging cell.

[36]  Hanna Göransson,et al.  Differential genome-wide array-based methylation profiles in prognostic subsets of chronic lymphocytic leukemia. , 2010, Blood.

[37]  Lee E. Edsall,et al.  Human DNA methylomes at base resolution show widespread epigenomic differences , 2009, Nature.

[38]  Margaret R. Karagas,et al.  Copy number variation has little impact on bead-array-based measures of DNA methylation , 2009, Bioinform..

[39]  N. Cox,et al.  SNPinProbe_1.0: A database for filtering out probes in the Affymetrix GeneChip® Human Exon 1.0 ST array potentially affected by SNPs , 2008, Bioinformation.

[40]  R. Sommer,et al.  A Caenorhabditis motif compendium for studying transcriptional gene regulation , 2008, BMC Genomics.

[41]  R. Alberts,et al.  Sequence Polymorphisms Cause Many False cis eQTLs , 2007, PloS one.

[42]  Y. Homma,et al.  Efficacy of primary hormone therapy for localized or locally advanced prostate cancer: results of a 10‐year follow‐up , 2006, BJU international.

[43]  A. Gnirke,et al.  Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis , 2005, Nucleic acids research.

[44]  W. Lam,et al.  Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells , 2005, Nature Genetics.

[45]  Li Yu,et al.  [DNA methylation and cancer]. , 2005, Zhonghua nei ke za zhi.

[46]  Kamel Jabbari,et al.  Cytosine methylation and CpG, TpG (CpA) and TpA frequencies. , 2004, Gene.

[47]  M. Ehrlich,et al.  DNA methylation in cancer: too much, but also too little , 2002, Oncogene.

[48]  J. Herman,et al.  DNA hypermethylation in tumorigenesis: epigenetics joins genetics. , 2000, Trends in genetics : TIG.

[49]  J. Herman,et al.  Methylation of the androgen receptor promoter CpG island is associated with loss of androgen receptor expression in prostate cancer cells. , 1998, Cancer research.

[50]  G Bernardi,et al.  Evolutionary changes in CpG and methylation levels in the genome of vertebrates. , 1997, Gene.

[51]  Michael Krawczak,et al.  Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes , 1989, Human Genetics.

[52]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[53]  A. Isaksson,et al.  subsets of chronic lymphocytic leukemia Differential genome-wide array-based methylation profiles in prognostic , 2009 .

[54]  William Stafford Noble,et al.  Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project , 2007, Nature.

[55]  P. Molloy,et al.  DNA hypomethylation and human diseases. , 2007, Biochimica et biophysica acta.

[56]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[57]  S. Balk,et al.  Review Nuclear Receptor Signaling | The Open Access Journal of the Nuclear Receptor Signaling Atlas AR, the cell cycle, and prostate cancer , 2022 .