Manifold Sampling for Optimizing Nonsmooth Nonconvex Compositions

We propose a manifold sampling algorithm for minimizing a nonsmooth composition $f= h\circ F$, where we assume $h$ is nonsmooth and may be inexpensively computed in closed form and $F$ is smooth but its Jacobian may not be available. We additionally assume that the composition $h\circ F$ defines a continuous selection. Manifold sampling algorithms can be classified as model-based derivative-free methods, in that models of $F$ are combined with particularly sampled information about $h$ to yield local models for use within a trust-region framework. We demonstrate that cluster points of the sequence of iterates generated by the manifold sampling algorithm are Clarke stationary. We consider the tractability of three particular subproblems generated by the manifold sampling algorithm and the extent to which inexact solutions to these subproblems may be tolerated. Numerical results demonstrate that manifold sampling as a derivative-free algorithm is competitive with state-of-the-art algorithms for nonsmooth optimization that utilize first-order information about $f$.

[1]  Coralia Cartis,et al.  Improving the Flexibility and Robustness of Model-based Derivative-free Optimization Solvers , 2018, ACM Trans. Math. Softw..

[2]  Adil M. Bagirov,et al.  Subgradient Method for Nonconvex Nonsmooth Optimization , 2013, J. Optim. Theory Appl..

[3]  Paul I. Barton,et al.  McCormick-Based Relaxations of Algorithms , 2009, SIAM J. Optim..

[4]  Stefan M. Wild,et al.  Manifold Sampling for ℓ1 Nonconvex Optimization , 2016, SIAM J. Optim..

[5]  Luís Nunes Vicente,et al.  Trust-Region Methods Without Using Derivatives: Worst Case Complexity and the NonSmooth Case , 2016, SIAM J. Optim..

[6]  Stefan M. Wild,et al.  Derivative-free robust optimization by outer approximations , 2018, Math. Program..

[7]  Adrian S. Lewis,et al.  Approximating Subdifferentials by Random Sampling of Gradients , 2002, Math. Oper. Res..

[8]  R. Fletcher,et al.  Second order corrections for non-differentiable optimization , 1982 .

[9]  R. Fletcher,et al.  An algorithm for composite nonsmooth optimization problems , 1986 .

[10]  Jong-Shi Pang,et al.  Minimization of Locally Lipschitzian Functions , 1991, SIAM J. Optim..

[11]  G. Liuzzi,et al.  Trust-Region Methods for the Derivative-Free Optimization of Nonsmooth Black-Box Functions , 2019, SIAM J. Optim..

[12]  Michael L. Overton,et al.  A Sequential Quadratic Programming Algorithm for Nonconvex, Nonsmooth Constrained Optimization , 2012, SIAM J. Optim..

[13]  Stefan M. Wild Chapter 40: POUNDERS in TAO: Solving Derivative-Free Nonlinear Least-Squares Problems with POUNDERS , 2017 .

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  H. Wiedemann Particle accelerator physics , 1993 .

[16]  Dmitriy Drusvyatskiy,et al.  Stochastic Subgradient Method Converges on Tame Functions , 2018, Foundations of Computational Mathematics.

[17]  Charles Audet,et al.  Model-Based Methods in Derivative-Free Nonsmooth Optimization , 2018 .

[18]  Tim Mitchell,et al.  A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles , 2017, Optim. Methods Softw..

[19]  Warren Hare,et al.  A Redistributed Proximal Bundle Method for Nonconvex Optimization , 2010, SIAM J. Optim..

[20]  A. Bagirov,et al.  Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization , 2008 .

[21]  Nicholas I. M. Gould,et al.  On the Evaluation Complexity of Composite Function Minimization with Applications to Nonconvex Nonlinear Programming , 2011, SIAM J. Optim..

[22]  Ya-Xiang Yuan,et al.  A derivative-free trust-region algorithm for composite nonsmooth optimization , 2014, Computational and Applied Mathematics.

[23]  Warren Hare,et al.  A proximal bundle method for nonsmooth nonconvex functions with inexact information , 2015, Computational Optimization and Applications.

[24]  K. Kiwiel A Method for Solving Certain Quadratic Programming Problems Arising in Nonsmooth Optimization , 1986 .

[25]  A. Bagirov,et al.  Limited memory discrete gradient bundle method for nonsmooth derivative-free optimization , 2012 .

[26]  Krzysztof C. Kiwiel,et al.  Convergence of the Gradient Sampling Algorithm for Nonsmooth Nonconvex Optimization , 2007, SIAM J. Optim..

[27]  Jong-Shi Pang,et al.  Composite Difference-Max Programs for Modern Statistical Estimation Problems , 2018, SIAM J. Optim..

[28]  Charles Audet,et al.  Derivative-Free and Blackbox Optimization , 2017 .

[29]  Andreas Griewank,et al.  On Lipschitz optimization based on gray-box piecewise linearization , 2016, Math. Program..

[30]  Ying Cui,et al.  Solving Nonsmooth Nonconvex Compound Stochastic Programs with Applications to Risk Measure Minimization , 2020, 2004.14342.

[31]  Paul I. Barton,et al.  Evaluating an element of the Clarke generalized Jacobian of a composite piecewise differentiable function , 2013, TOMS.

[32]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[33]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[34]  Stefan M. Wild,et al.  Manifold Sampling for Optimization of Nonconvex Functions That Are Piecewise Linear Compositions of Smooth Components , 2018, SIAM J. Optim..

[35]  Krzysztof C. Kiwiel,et al.  A Nonderivative Version of the Gradient Sampling Algorithm for Nonsmooth Nonconvex Optimization , 2010, SIAM J. Optim..

[36]  Ya-Xiang Yuan,et al.  On the superlinear convergence of a trust region algorithm for nonsmooth optimization , 1985, Math. Program..

[37]  Marko Mäkelä,et al.  Survey of Bundle Methods for Nonsmooth Optimization , 2002, Optim. Methods Softw..

[38]  Ya-Xiang Yuan,et al.  Conditions for convergence of trust region algorithms for nonsmooth optimization , 1985, Math. Program..

[39]  Adil M. Bagirov,et al.  An approximate subgradient algorithm for unconstrained nonsmooth, nonconvex optimization , 2008, Math. Methods Oper. Res..

[40]  R. Fletcher A model algorithm for composite nondifferentiable optimization problems , 1982 .

[41]  Adrian S. Lewis,et al.  Clarke Subgradients of Stratifiable Functions , 2006, SIAM J. Optim..

[42]  Adrian S. Lewis,et al.  A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization , 2005, SIAM J. Optim..

[43]  Katya Scheinberg,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[44]  Liqun Qi,et al.  A trust region algorithm for minimization of locally Lipschitzian functions , 1994, Math. Program..

[45]  Warren Hare,et al.  A derivative-free 𝒱𝒰-algorithm for convex finite-max problems , 2019, Optim. Methods Softw..

[46]  Krzysztof C. Kiwiel,et al.  Restricted Step and Levenberg-Marquardt Techniques in Proximal Bundle Methods for Nonconvex Nondifferentiable Optimization , 1996, SIAM J. Optim..

[47]  U. Naumann,et al.  Adjoint Mode Computation of Subgradients for McCormick Relaxations , 2012 .

[48]  Ali Hakan Tor Comparative numerical results on HANSO (Hybrid Algorithm for Nonsmooth Optimization) , 2020 .

[49]  Frank E. Curtis,et al.  An adaptive gradient sampling algorithm for non-smooth optimization , 2013, Optim. Methods Softw..

[50]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[51]  Andreas Griewank,et al.  Characterizing and Testing Subdifferential Regularity in Piecewise Smooth Optimization , 2019, SIAM J. Optim..

[52]  Paul I. Barton,et al.  A vector forward mode of automatic differentiation for generalized derivative evaluation , 2015, Optim. Methods Softw..

[53]  Michael L. Overton,et al.  Gradient Sampling Methods for Nonsmooth Optimization , 2018, Numerical Nonsmooth Optimization.

[54]  A. D. Ioffe,et al.  An Invitation to Tame Optimization , 2008, SIAM J. Optim..

[55]  Carola-Bibiane Schonlieb,et al.  A Geometric Integration Approach to Nonsmooth, Nonconvex Optimisation , 2018, Foundations of Computational Mathematics.

[56]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[57]  Stefan M. Wild,et al.  Derivative-free optimization methods , 2019, Acta Numerica.

[58]  Andreas Griewank,et al.  First- and second-order optimality conditions for piecewise smooth objective functions , 2016, Optim. Methods Softw..

[59]  Stefan M. Wild,et al.  Benchmarking Derivative-Free Optimization Algorithms , 2009, SIAM J. Optim..

[60]  R. Tyrrell Rockafellar,et al.  A Property of Piecewise Smooth Functions , 2003, Comput. Optim. Appl..

[61]  S. Scholtes Introduction to Piecewise Differentiable Equations , 2012 .