Shrinking kinetics by vacancy diffusion of a pure element hollow nanosphere

In this paper, shrinking via the vacancy mechanism of a hollow mono-atomic nanosphere is described. Using Gibbs–Thomson boundary conditions, an exact solution is obtained for the kinetic equation in quasi steady-state at the linear approximation. Collapse time as a function of the geometrical size of a hollow nanosphere is found. An extension to hollow binary alloy nanospheres is also made. Previous Monte Carlo simulations of this problem are discussed.