Surface and Interface Engineering of Silicon‐Based Anode Materials for Lithium‐Ion Batteries

Silicon is one of the most promising anode materials for lithium‐ion batteries because of the highest known theoretical capacity and abundance in the earth' crust. Unfortunately, significant “breathing effect” during insertion/deinsertion of lithium in the continuous charge‐discharge processes causes the seriously structural degradation, thus losing specific capacity and increasing battery impedance. To overcome the resultant rapid capacity decay, significant achievements has been made in developing various nanostructures and surface coating approaches in terms of the improvement of structural stability and realizing the long cycle times. Here, the recent progress in surface and interface engineering of silicon‐based anode materials such as core‐shell, yolk‐shell, sandwiched structures and their applications in lithium‐ion batteries are reviewed. Some feasible strategies for the structural design and boosting the electrochemical performance are highlighted. Future research directions in the field of silicon‐based anode materials for next‐generation lithium‐ion batteries are summarized.

[1]  Yuanzhe Piao,et al.  Extensively interconnected silicon nanoparticles via carbon network derived from ultrathin cellulose nanofibers as high performance lithium ion battery anodes , 2017 .

[2]  Hongwei Yu,et al.  China's energy storage industry: Develop status, existing problems and countermeasures , 2017 .

[3]  Yong Wang,et al.  Recent developments of aprotic lithium-oxygen batteries: functional materials determine the electrochemical performance. , 2017, Science bulletin.

[4]  Jinxiu Wang,et al.  Mesoporous carbon confined palladium–copper alloy composites for high performance nitrogen selective nitrate reduction electrocatalysis , 2017 .

[5]  Zhan-jun Liu,et al.  Double Core-Shell Si@C@SiO2 for Anode Material of Lithium-Ion Batteries with Excellent Cycling Stability. , 2017, Chemistry.

[6]  Ya‐Xia Yin,et al.  Watermelon‐Inspired Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithium‐Ion Battery Anodes , 2017 .

[7]  D. King Global clean energy in 2017 , 2017, Science.

[8]  Jianping Yang,et al.  Germanium Nanograin Decoration on Carbon Shell: Boosting Lithium‐Storage Properties of Silicon Nanoparticles , 2016 .

[9]  S. Dou,et al.  Silicon/Mesoporous Carbon/Crystalline TiO2 Nanoparticles for Highly Stable Lithium Storage. , 2016, ACS nano.

[10]  Kyeongse Song,et al.  Carbon‐Coated Si Nanoparticles Anchored between Reduced Graphene Oxides as an Extremely Reversible Anode Material for High Energy‐Density Li‐Ion Battery , 2016 .

[11]  D. Zhao,et al.  A Micelle Fusion-Aggregation Assembly Approach to Mesoporous Carbon Materials with Rich Active Sites for Ultrasensitive Ammonia Sensing. , 2016, Journal of the American Chemical Society.

[12]  Steven D. Lacey,et al.  Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. , 2016, Journal of the American Chemical Society.

[13]  Jun Lu,et al.  Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation , 2016 .

[14]  S. Dou,et al.  Critical thickness of phenolic resin-based carbon interfacial layer for improving long cycling stability of silicon nanoparticle anodes , 2016 .

[15]  Matthew D. Goodman,et al.  Graphene Sandwiched Mesostructured Li‐Ion Battery Electrodes , 2016, Advanced materials.

[16]  M. Ge,et al.  In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures , 2016, Scientific Reports.

[17]  Bingan Lu,et al.  Atomic-Scale Control of Silicon Expansion Space as Ultrastable Battery Anodes. , 2016, ACS nano.

[18]  Claudio V. Di Leo,et al.  In Situ Lithiation–Delithiation of Mechanically Robust Cu–Si Core–Shell Nanolattices in a Scanning Electron Microscope , 2016 .

[19]  Kai Huang,et al.  Synthesis of Si/TiO2 core–shell nanoparticles as anode material for high performance lithium ion batteries , 2016, Journal of Materials Science: Materials in Electronics.

[20]  Zhong Lin Wang,et al.  Lithium ion battery anodes using Si-Fe based nanocomposite structures , 2016 .

[21]  Hyun‐Kon Song,et al.  Design of an ultra-durable silicon-based battery anode material with exceptional high-temperature cycling stability , 2016 .

[22]  Ya‐Xia Yin,et al.  Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries , 2016 .

[23]  Yunhui Huang,et al.  Si-containing precursors for Si-based anode materials of Li-ion batteries: A review , 2016 .

[24]  X. Lou,et al.  Electrolytic Formation of Crystalline Silicon/Germanium Alloy Nanotubes and Hollow Particles with Enhanced Lithium-Storage Properties. , 2016, Angewandte Chemie.

[25]  Y. Bando,et al.  Scalable production of 3D plum-pudding-like Si/C spheres: Towards practical application in Li-ion batteries , 2016 .

[26]  Chunzeng Li,et al.  Control and Optimization of the Electrochemical and Mechanical Properties of the Solid Electrolyte Interphase on Silicon Electrodes in Lithium Ion Batteries , 2016 .

[27]  P. Moreau,et al.  Multiprobe Study of the Solid Electrolyte Interphase on Silicon-Based Electrodes in Full-Cell Configuration , 2016, Chemistry of materials : a publication of the American Chemical Society.

[28]  Yi-Tao Liu,et al.  Constructing Novel Si@SnO2 Core-Shell Heterostructures by Facile Self-Assembly of SnO2 Nanowires on Silicon Hollow Nanospheres for Large, Reversible Lithium Storage. , 2016, ACS applied materials & interfaces.

[29]  Thomas M. Higgins,et al.  A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes. , 2016, ACS nano.

[30]  Jong Won Chung,et al.  A Stretchable Graphitic Carbon/Si Anode Enabled by Conformal Coating of a Self‐Healing Elastic Polymer , 2016, Advanced materials.

[31]  Junwei Wu,et al.  A Core-Shell Si@NiSi2/Ni/C Nanocomposite as an Anode Material for Lithium-ion Batteries , 2016 .

[32]  Jinkyu Lee,et al.  Variation in Crystalline Phases: Controlling the Selectivity between Silicon and Silicon Carbide via Magnesiothermic Reduction using Silica/Carbon Composites , 2016 .

[33]  Jinqiu Zhou,et al.  Core-Shell Coating Silicon Anode Interfaces with Coordination Complex for Stable Lithium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[34]  C. Wen,et al.  Nanostructured Silicon Anodes for High‐Performance Lithium‐Ion Batteries , 2016 .

[35]  Zaiping Guo,et al.  Highly Ordered Dual Porosity Mesoporous Cobalt Oxide for Sodium‐Ion Batteries , 2016 .

[36]  Hyun-Wook Lee,et al.  Erratum: Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes , 2016, Nature Energy.

[37]  Tie-hu Li,et al.  Well-constructed silicon-based materials as high-performance lithium-ion battery anodes. , 2016, Nanoscale.

[38]  Qianran He,et al.  Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. , 2016, Nanoscale.

[39]  Chongmin Wang,et al.  Inward lithium-ion breathing of hierarchically porous silicon anodes , 2015, Nature Communications.

[40]  Chenglin Yan,et al.  Porous Si Nanowires from Cheap Metallurgical Silicon Stabilized by a Surface Oxide Layer for Lithium Ion Batteries , 2015 .

[41]  D. Zhao,et al.  Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries , 2015 .

[42]  Yitai Qian,et al.  A low temperature molten salt process for aluminothermic reduction of silicon oxides to crystalline Si for Li-ion batteries , 2015 .

[43]  D. Zhao,et al.  Uniform yolk-shell iron sulfide–carbon nanospheres for superior sodium–iron sulfide batteries , 2015, Nature Communications.

[44]  X. Qiu,et al.  Hollow Structured Silicon Anodes with Stabilized Solid Electrolyte Interphase Film for Lithium-Ion Batteries. , 2015, ACS applied materials & interfaces.

[45]  K. Amine,et al.  Silicon-Copper Helical Arrays for New Generation Lithium Ion Batteries. , 2015, Nano letters.

[46]  Yi Du,et al.  3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage , 2015, Scientific Reports.

[47]  U. Paik,et al.  Graphene as an Interfacial Layer for Improving Cycling Performance of Si Nanowires in Lithium-Ion Batteries. , 2015, Nano letters.

[48]  Yanjie Hu,et al.  Face‐to‐Face Contact and Open‐Void Coinvolved Si/C Nanohybrids Lithium‐Ion Battery Anodes with Extremely Long Cycle Life , 2015 .

[49]  D. Zhao,et al.  Monodisperse core-shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels , 2015, Nano Research.

[50]  Yunbo Zhang,et al.  High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies. , 2015, Nano letters.

[51]  P. Chu,et al.  Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes. , 2015, Nanoscale.

[52]  D. Zhao,et al.  Ultradispersed Palladium Nanoparticles in Three-Dimensional Dendritic Mesoporous Silica Nanospheres: Toward Active and Stable Heterogeneous Catalysts. , 2015, ACS applied materials & interfaces.

[53]  Dingchang Lin,et al.  A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries , 2015 .

[54]  Min Gyu Kim,et al.  High-performance silicon-based multicomponent battery anodes produced via synergistic coupling of multifunctional coating layers , 2015 .

[55]  Seok-Gwang Doo,et al.  Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density , 2015, Nature Communications.

[56]  Xiulin Fan,et al.  Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes. , 2015, ACS nano.

[57]  Sehee Lee,et al.  Structure and Reactivity of Alucone-Coated Films on Si and Li(x)Si(y) Surfaces. , 2015, ACS applied materials & interfaces.

[58]  Diana Golodnitsky,et al.  Tissue-like Silicon Nanowires-Based Three-Dimensional Anodes for High-Capacity Lithium Ion Batteries. , 2015, Nano letters.

[59]  Prakash Sengodu,et al.  Conducting polymers and their inorganic composites for advanced Li-ion batteries: a review , 2015 .

[60]  Young Gyu Kim,et al.  Poly(phenanthrenequinone) as a conductive binder for nano-sized silicon negative electrodes , 2015 .

[61]  Xiaogang Zhang,et al.  Si nanoparticles encapsulated in elastic hollow carbon fibres for Li-ion battery anodes with high structural stability. , 2015, Nanoscale.

[62]  Taek-Soo Kim,et al.  Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes , 2015 .

[63]  M. MacLachlan,et al.  Magnesiothermic Reduction of Thin Films: Towards Semiconducting Chiral Nematic Mesoporous Silicon Carbide and Silicon Structures , 2015 .

[64]  Yan‐Bing He,et al.  Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode , 2015 .

[65]  Jie Zhou,et al.  Preparation of nanocrystalline silicon from SiCl4 at 200 °C in molten salt for high-performance anodes for lithium ion batteries. , 2015, Angewandte Chemie.

[66]  Yi Cui,et al.  Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. , 2015, ACS nano.

[67]  Rachel Ye,et al.  Monodisperse Porous Silicon Spheres as Anode Materials for Lithium Ion Batteries , 2015, Scientific Reports.

[68]  Huajian Gao,et al.  Regulated Breathing Effect of Silicon Negative Electrode for Dramatically Enhanced Performance of Li‐Ion Battery , 2015 .

[69]  Weidong Zhou,et al.  Toward High Cycle Efficiency of Silicon‐Based Negative Electrodes by Designing the Solid Electrolyte Interphase , 2015 .

[70]  Yu Zhu,et al.  Core-shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes. , 2015, Small.

[71]  Xianglong Li,et al.  Approaching the Downsizing Limit of Silicon for Surface‐Controlled Lithium Storage , 2015, Advanced materials.

[72]  D. Zhao,et al.  General strategy to synthesize uniform mesoporous TiO2/graphene/mesoporous TiO2 sandwich-like nanosheets for highly reversible lithium storage. , 2015, Nano letters.

[73]  M. Verbrugge,et al.  Experimental and Theoretical Characterization of Electrode Materials That Undergo Large Volume Changes and Application to the Lithium-Silicon System , 2015 .

[74]  Cheng Wang,et al.  Side-chain conducting and phase-separated polymeric binders for high-performance silicon anodes in lithium-ion batteries. , 2015, Journal of the American Chemical Society.

[75]  Rachel Ye,et al.  Towards Scalable Binderless Electrodes: Carbon Coated Silicon Nanofiber Paper via Mg Reduction of Electrospun SiO2 Nanofibers , 2015, Scientific Reports.

[76]  O. Schmidt,et al.  Sandwich nanoarchitecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life. , 2015, ACS nano.

[77]  Matthew D. Goodman,et al.  Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes. , 2015, ACS nano.

[78]  Wei Li,et al.  Direct plasma deposition of amorphous Si/C nanocomposites as high performance anodes for lithium ion batteries , 2015 .

[79]  Oliver G. Schmidt,et al.  Stable Silicon Anodes for Lithium‐Ion Batteries Using Mesoporous Metallurgical Silicon , 2015 .

[80]  A. Murugan,et al.  Development of Sustainable Rapid Microwave Assisted Process for Extracting Nanoporous Si from Earth Abundant Agricultural Residues and Their Carbon-based Nanohybrids for Lithium Energy Storage , 2015 .

[81]  P. Qi,et al.  In situ growth of MOFs on the surface of si nanoparticles for highly efficient lithium storage: Si@MOF nanocomposites as anode materials for lithium-ion batteries. , 2015, ACS applied materials & interfaces.

[82]  Q. Xia,et al.  Engineered Si sandwich electrode: Si nanoparticles/graphite sheet hybrid on ni foam for next-generation high-performance lithium-ion batteries. , 2015, ACS applied materials & interfaces.

[83]  Ping Wu,et al.  Hollow porous silicon oxide nanobelts for high-performance lithium storage , 2015 .

[84]  Liangbing Hu,et al.  Interfacial oxygen stabilizes composite silicon anodes. , 2015, Nano letters.

[85]  Sang-Hoon Park,et al.  Spray-Assisted Deep-Frying Process for the In Situ Spherical Assembly of Graphene for Energy-Storage Devices , 2015 .

[86]  D. T. Pham,et al.  Hollow carbon nanospheres/silicon/alumina core-shell film as an anode for lithium-ion batteries , 2015, Scientific Reports.

[87]  Bo Liang,et al.  Silicon-based materials as high capacity anodes for next generation lithium ion batteries , 2014 .

[88]  Zhenyu Wang,et al.  Lithiation of SiO2 in Li-ion batteries: in situ transmission electron microscopy experiments and theoretical studies. , 2014, Nano letters.

[89]  J. Choi,et al.  Scalable fracture-free SiOC glass coating for robust silicon nanoparticle anodes in lithium secondary batteries. , 2014, Nano letters.

[90]  Meng Gu,et al.  In situ transmission electron microscopy probing of native oxide and artificial layers on silicon nanoparticles for lithium ion batteries. , 2014, ACS nano.

[91]  V. Battaglia,et al.  Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design. , 2014, Nano letters.

[92]  Dongyuan Zhao,et al.  Highly Reversible and Large Lithium Storage in Mesoporous Si/C Nanocomposite Anodes with Silicon Nanoparticles Embedded in a Carbon Framework , 2014, Advanced materials.

[93]  D. Zhao,et al.  Mesoporous Silica‐Coated Plasmonic Nanostructures for Surface‐Enhanced Raman Scattering Detection and Photothermal Therapy , 2014, Advanced healthcare materials.

[94]  A. Hu,et al.  Si-Based Anode Materials for Li-Ion Batteries: A Mini Review , 2014, Nano-micro letters.

[95]  Wei Fu,et al.  Surface Binding of Polypyrrole on Porous Silicon Hollow Nanospheres for Li‐Ion Battery Anodes with High Structure Stability , 2014, Advanced materials.

[96]  Jaephil Cho,et al.  Novel design of ultra-fast Si anodes for Li-ion batteries: crystalline Si@amorphous Si encapsulating hard carbon. , 2014, Nanoscale.

[97]  T. Kyotani,et al.  Conversion of silica nanoparticles into Si nanocrystals through electrochemical reduction. , 2014, Nanoscale.

[98]  Haizhu Sun,et al.  A novel approach to prepare Si/C nanocomposites with yolk-shell structures for lithium ion batteries , 2014 .

[99]  Jaephil Cho,et al.  Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries. , 2014, ACS nano.

[100]  Kazi Ahmed,et al.  Silicon decorated cone shaped carbon nanotube clusters for lithium ion battery anodes. , 2014, Small.

[101]  Zaiping Guo,et al.  Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. , 2014, ACS nano.

[102]  Michael J Sailor,et al.  Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes , 2014, Nature Communications.

[103]  Cengiz S. Ozkan,et al.  Scalable Synthesis of Nano-Silicon from Beach Sand for Long Cycle Life Li-ion Batteries , 2014, Scientific Reports.

[104]  Shun Mao,et al.  Controllable Synthesis of Hollow Si Anode for Long‐Cycle‐Life Lithium‐Ion Batteries , 2014, Advanced materials.

[105]  Francesco De Angelis,et al.  Review on recent progress of nanostructured anode materials for Li-ion batteries , 2014 .

[106]  Oliver G. Schmidt,et al.  Hierarchically Designed SiOx/SiOy Bilayer Nanomembranes as Stable Anodes for Lithium Ion Batteries , 2014, Advanced materials.

[107]  Shuru Chen,et al.  Titanium nitride coating to enhance the performance of silicon nanoparticles as a lithium-ion battery anode , 2014 .

[108]  Yitai Qian,et al.  Low temperature chemical reduction of fusional sodium metasilicate nonahydrate into a honeycomb porous silicon nanostructure. , 2014, Chemical communications.

[109]  P. Moreau,et al.  Very High Surface Capacity Observed Using Si Negative Electrodes Embedded in Copper Foam as 3D Current Collectors , 2014 .

[110]  Ling Huang,et al.  A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery. , 2014, Chemical communications.

[111]  Lei Pan,et al.  Facile synthesis of yolk-shell structured Si-C nanocomposites as anodes for lithium-ion batteries. , 2014, Chemical communications.

[112]  Xiaogang Zhang,et al.  Rational design of void-involved Si@TiO2 nanospheres as high-performance anode material for lithium-ion batteries. , 2014, ACS applied materials & interfaces.

[113]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[114]  Jonathan J. Travis,et al.  Reversible High‐Capacity Si Nanocomposite Anodes for Lithium‐ion Batteries Enabled by Molecular Layer Deposition , 2014, Advanced materials.

[115]  Yonggang Huang,et al.  Electrochemical Properties of Si‐Ge Heterostructures as an Anode Material for Lithium Ion Batteries , 2014 .

[116]  Soo Min Hwang,et al.  Core-shell structured silicon nanoparticles@TiO2-x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode. , 2014, ACS nano.

[117]  Wei-li Song,et al.  Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries. , 2014, Nanoscale.

[118]  Haixia Li,et al.  Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries , 2014 .

[119]  Ping Wu,et al.  Three-dimensional interconnected network of graphene-wrapped porous silicon spheres: in situ magnesiothermic-reduction synthesis and enhanced lithium-storage capabilities. , 2014, ACS applied materials & interfaces.

[120]  Yunhui Zhao,et al.  Novel mesoporous Si@C microspheres as anodes for lithium-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[121]  Junhong Chen,et al.  Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High‐Performance Lithium‐Ion Battery Anode , 2014, Advanced materials.

[122]  Huisheng Peng,et al.  Twisted Aligned Carbon Nanotube/Silicon Composite Fiber Anode for Flexible Wire‐Shaped Lithium‐Ion Battery , 2014, Advanced materials.

[123]  D. Zhao,et al.  Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. , 2014, Nano letters.

[124]  D. Mitlin,et al.  Si nanotubes ALD coated with TiO2, TiN or Al2O3 as high performance lithium ion battery anodes , 2014 .

[125]  J. Choi,et al.  N-doped graphitic self-encapsulation for high performance silicon anodes in lithium-ion batteries , 2014 .

[126]  Qing Zhang,et al.  A multilayer Si/CNT coaxial nanofiber LIB anode with a high areal capacity , 2014 .

[127]  D. Zhao,et al.  Large pore mesostructured cellular silica foam coated magnetic oxide composites with multilamellar vesicle shells for adsorption. , 2014, Chemical communications.

[128]  Jong‐Min Lee,et al.  Novel synthesis of high performance anode materials for lithium-ion batteries (LIBs) , 2014 .

[129]  Donald R. Baer,et al.  Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries , 2014, Scientific Reports.

[130]  M. Ge,et al.  Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon. , 2014, Nano letters.

[131]  Zhenan Bao,et al.  Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. , 2013, Nature chemistry.

[132]  Wei Li,et al.  Sol-gel design strategy for ultradispersed TiO2 nanoparticles on graphene for high-performance lithium ion batteries. , 2013, Journal of the American Chemical Society.

[133]  G. Cui,et al.  Preparation of silicon@silicon oxide core-shell nanowires from a silica precursor toward a high energy density Li-ion battery anode. , 2013, ACS applied materials & interfaces.

[134]  Donghai Wang,et al.  Influence of Silicon Nanoscale Building Blocks Size and Carbon Coating on the Performance of Micro‐Sized Si–C Composite Li‐Ion Anodes , 2013 .

[135]  Soojin Park,et al.  Highly dispersive and electrically conductive silver-coated Si anodes synthesized via a simple chemical reduction process , 2013 .

[136]  S. T. Picraux,et al.  Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands. , 2013, Nano letters.

[137]  V. Battaglia,et al.  Conductive Polymer and Silicon Composite Secondary Particles for a High Area-Loading Negative Electrode , 2013 .

[138]  V. Battaglia,et al.  In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes. , 2013, Nano letters.

[139]  C. Liang,et al.  An Artificial Solid Electrolyte Interphase Enables the Use of a LiNi0.5 Mn1.5 O4 5 V Cathode with Conventional Electrolytes , 2013 .

[140]  G. Bidan,et al.  Nanosilicon‐Based Thick Negative Composite Electrodes for Lithium Batteries with Graphene as Conductive Additive , 2013 .

[141]  M. Ge,et al.  Review of porous silicon preparation and its application for lithium-ion battery anodes , 2013, Nanotechnology.

[142]  Zhen Wei,et al.  Fabrication and electrochemical properties of Si/TiO2 nanowire array composites as lithium ion battery anodes , 2013 .

[143]  Chunsheng Wang,et al.  Hoop-strong nanotubes for battery electrodes. , 2013, ACS nano.

[144]  Xiaobin Fan,et al.  Graphene‐Encapsulated Si on Ultrathin‐Graphite Foam as Anode for High Capacity Lithium‐Ion Batteries , 2013, Advanced materials.

[145]  Xiangwu Zhang,et al.  Aligned Carbon Nanotube‐Silicon Sheets: A Novel Nano‐architecture for Flexible Lithium Ion Battery Electrodes , 2013, Advanced materials.

[146]  Yi Cui,et al.  25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium‐Ion Batteries , 2013, Advanced materials.

[147]  Jaephil Cho,et al.  Critical Thickness of SiO2 Coating Layer on Core@Shell Bulk@Nanowire Si Anode Materials for Li‐Ion Batteries , 2013, Advanced materials.

[148]  Yu‐Guo Guo,et al.  Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries. , 2013, Small.

[149]  Chunsheng Wang,et al.  Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes. , 2013, Small.

[150]  Kai Huang,et al.  A rationally designed composite of alternating strata of Si nanoparticles and graphene: a high-performance lithium-ion battery anode. , 2013, Nanoscale.

[151]  Qing Zhang,et al.  High performance lithium ion battery anodes based on carbon nanotube–silicon core–shell nanowires with controlled morphology , 2013 .

[152]  D. Zhao,et al.  Spatially Confined Fabrication of Core−Shell Gold Nanocages@Mesoporous Silica for Near-Infrared Controlled Photothermal Drug Release , 2013 .

[153]  Yunbo Zhang,et al.  Contact‐Engineered and Void‐Involved Silicon/Carbon Nanohybrids as Lithium‐Ion‐Battery Anodes , 2013, Advanced materials.

[154]  P. Moreau,et al.  A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries , 2013 .

[155]  Mengyun Nie,et al.  ANODE SOLID ELECTROLYTE INTERPHASE (SEI) OF LITHIUM ION BATTERY CHARACTERIZED BY MICROSCOPY AND SPECTROSCOPY , 2013 .

[156]  D. Losic,et al.  Mesoporous silicon engineered by the reduction of biosilica from rice husk as a high-performance anode for lithium-ion batteries , 2013 .

[157]  Zhenan Bao,et al.  Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles , 2013, Nature Communications.

[158]  Yi Cui,et al.  Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes , 2013, Scientific Reports.

[159]  John B Goodenough,et al.  Evolution of strategies for modern rechargeable batteries. , 2013, Accounts of chemical research.

[160]  Jun Liu,et al.  Critical silicon-anode size for averting lithiation-induced mechanical failure of lithium-ion batteries , 2013 .

[161]  D. He,et al.  Network structures of fullerene-like carbon core/nano-crystalline silicon shell nanofibers as anode material for lithium-ion batteries , 2013 .

[162]  Myung-Hyun Ryou,et al.  Mussel‐Inspired Adhesive Binders for High‐Performance Silicon Nanoparticle Anodes in Lithium‐Ion Batteries , 2013, Advanced materials.

[163]  Shuru Chen,et al.  Micro‐sized Si‐C Composite with Interconnected Nanoscale Building Blocks as High‐Performance Anodes for Practical Application in Lithium‐Ion Batteries , 2013 .

[164]  Wenping Si,et al.  Naturally rolled-up C/Si/C trilayer nanomembranes as stable anodes for lithium-ion batteries with remarkable cycling performance. , 2013, Angewandte Chemie.

[165]  Seung M. Oh,et al.  Si‐Encapsulating Hollow Carbon Electrodes via Electroless Etching for Lithium‐Ion Batteries , 2013 .

[166]  Yi Cui,et al.  In situ TEM of two-phase lithiation of amorphous silicon nanospheres. , 2013, Nano letters.

[167]  Meihua Jin,et al.  Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. , 2013, ACS nano.

[168]  Li-Jun Wan,et al.  Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries , 2012, Nano Research.

[169]  Y. Jung,et al.  Scalable Fabrication of Silicon Nanotubes and their Application to Energy Storage , 2012, Advanced materials.

[170]  Hui Wu,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[171]  M. Sailor Porous Silicon in Practice: Preparation, Characterization and Applications , 2012 .

[172]  Ya‐Xia Yin,et al.  Self‐Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium‐Ion Batteries , 2012 .

[173]  Shuru Chen,et al.  Silicon core-hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries. , 2012, Physical chemistry chemical physics : PCCP.

[174]  Wei Li,et al.  A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core-shell structures. , 2012, Journal of the American Chemical Society.

[175]  Jaephil Cho,et al.  High‐Performance Macroporous Bulk Silicon Anodes Synthesized by Template‐Free Chemical Etching , 2012 .

[176]  Yi Cui,et al.  Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings , 2012 .

[177]  Ji‐Guang Zhang,et al.  Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes , 2012 .

[178]  Hui Wu,et al.  A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. , 2012, Nano letters.

[179]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[180]  Yi Cui,et al.  The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation , 2012 .

[181]  Li-Jun Wan,et al.  Silicon-based nanomaterials for lithium-ion batteries , 2012 .

[182]  Dongyun Chen,et al.  Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles. , 2012, Angewandte Chemie.

[183]  Yong Min Lee,et al.  Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. , 2012, Nano letters.

[184]  Hui Wu,et al.  Engineering empty space between Si nanoparticles for lithium-ion battery anodes. , 2012, Nano letters.

[185]  Xiqian Yu,et al.  Alumina‐Coated Patterned Amorphous Silicon as the Anode for a Lithium‐Ion Battery with High Coulombic Efficiency , 2011, Advanced materials.

[186]  Zhi Yang,et al.  Novel Three‐Dimensional Mesoporous Silicon for High Power Lithium‐Ion Battery Anode Material , 2011 .

[187]  Harold H. Kung,et al.  In‐Plane Vacancy‐Enabled High‐Power Si–Graphene Composite Electrode for Lithium‐Ion Batteries , 2011 .

[188]  Xiangyun Song,et al.  Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes , 2011, Advanced materials.

[189]  D. Zhao,et al.  Core-shell Ag@SiO2@mSiO2 mesoporous nanocarriers for metal-enhanced fluorescence. , 2011, Chemical communications.

[190]  D. Bélanger,et al.  Chemical Coupling of Carbon Nanotubes and Silicon Nanoparticles for Improved Negative Electrode Performance in Lithium‐Ion Batteries , 2011 .

[191]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[192]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[193]  Hui Wu,et al.  Novel size and surface oxide effects in silicon nanowires as lithium battery anodes. , 2011, Nano letters.

[194]  Yi Cui,et al.  Silicon–Carbon Nanotube Coaxial Sponge as Li‐Ion Anodes with High Areal Capacity , 2011 .

[195]  Yi Cui,et al.  Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. , 2011, Nano letters.

[196]  Prashanth H. Jampani,et al.  Amorphous silicon-carbon based nano-scale thin film anode materials for lithium ion batteries , 2011 .

[197]  Lin Gu,et al.  Reversible Storage of Lithium in Silver‐Coated Three‐Dimensional Macroporous Silicon , 2010, Advanced materials.

[198]  Zongping Shao,et al.  Si/C composite lithium-ion battery anodes synthesized from coarse silicon and citric acid through combined ball milling and thermal pyrolysis , 2010 .

[199]  Pengjian Zuo,et al.  Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source , 2010 .

[200]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[201]  Jaephil Cho,et al.  A critical size of silicon nano-anodes for lithium rechargeable batteries. , 2010, Angewandte Chemie.

[202]  Alexander Kvit,et al.  High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. , 2010, ACS nano.

[203]  Fan Zhang,et al.  Mesoporous silica encapsulating upconversion luminescence rare-earth fluoride nanorods for secondary excitation. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[204]  Liwen Ji,et al.  Evaluation of Si/carbon composite nanofiber-based insertion anodes for new-generation rechargeable lithium-ion batteries , 2010 .

[205]  Jiulin Wang,et al.  Microporous carbon coated silicon core/shell nanocomposite via in situ polymerization for advanced Li-ion battery anode material. , 2009, Physical chemistry chemical physics : PCCP.

[206]  Ranganath Teki,et al.  Nanostructured silicon anodes for lithium ion rechargeable batteries. , 2009, Small.

[207]  M. Verbrugge,et al.  The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles , 2008 .

[208]  Jaephil Cho,et al.  Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. , 2008, Nano letters.

[209]  M. Verbrugge,et al.  Stress Distribution within Spherical Particles Undergoing Electrochemical Insertion and Extraction , 2008 .

[210]  R. Schlögl,et al.  Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. , 2008, Angewandte Chemie.

[211]  M. Armand,et al.  Building better batteries , 2008, Nature.

[212]  J. Tarascon,et al.  Towards a Fundamental Understanding of the Improved Electrochemical Performance of Silicon–Carbon Composites , 2007 .

[213]  D. Wexler,et al.  Amorphous Carbon-Coated Silicon Nanocomposites: A Low-Temperature Synthesis via Spray Pyrolysis and Their Application as High-Capacity Anodes for Lithium-Ion Batteries , 2007 .

[214]  Jun Chen,et al.  Novel Nano-silicon / Polypyrrole Composites for Lithium Storage , 2007 .

[215]  Ye Cai,et al.  Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas , 2007, Nature.

[216]  Z. Wen,et al.  Electrochemical performances of silicon electrode with silver additives , 2006 .

[217]  David Wexler,et al.  Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. , 2006, Angewandte Chemie.

[218]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[219]  Seung M. Oh,et al.  Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries , 2005 .

[220]  Mo-hua Yang,et al.  Electrochemical Characterizations on Si and C-Coated Si Particle Electrodes for Lithium-Ion Batteries , 2005 .

[221]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[222]  Min Park,et al.  Amorphous silicon anode for lithium-ion rechargeable batteries , 2003 .

[223]  Z. Wen,et al.  High capacity silicon/carbon composite anode materials for lithium ion batteries , 2003 .

[224]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[225]  M. Yoshio,et al.  Novel Anode Material for Lithium-ion Batteries: Carbon-Coated Silicon Prepared by Thermal Vapor Decomposition , 2001 .

[226]  Martin Winter,et al.  Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? , 1997 .

[227]  Peter Müller-Buschbaum,et al.  Silicon based lithium-ion battery anodes: A chronicle perspective review , 2017 .

[228]  Huakun Liu,et al.  A Green and Facile Way to Prepare Granadilla‐Like Silicon‐Based Anode Materials for Li‐Ion Batteries , 2016 .

[229]  Kaixue Wang,et al.  Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials , 2016 .

[230]  P. He,et al.  Highly Connected Silicon–Copper Alloy Mixture Nanotubes as High‐Rate and Durable Anode Materials for Lithium‐Ion Batteries , 2016 .

[231]  Bonan Liu,et al.  Review—Nano-Silicon/Carbon Composite Anode Materials Towards Practical Application for Next Generation Li-Ion Batteries , 2015 .

[232]  Chunsheng Wang,et al.  Micro-sized nano-porous Si/C anodes for lithium ion batteries , 2015 .

[233]  Chunsheng Wang,et al.  3D Si/C Fiber Paper Electrodes Fabricated Using a Combined Electrospray/Electrospinning Technique for Li‐Ion Batteries , 2015 .

[234]  Wenquan Lu,et al.  Silicon‐Based Nanomaterials for Lithium‐Ion Batteries: A Review , 2014 .

[235]  Xiangyang Zhou,et al.  Silicon@carbon hollow core–shell heterostructures novel anode materials for lithium ion batteries , 2013 .

[236]  M. Alcoutlabi,et al.  Structure control and performance improvement of carbon nanofibers containing a dispersion of silicon nanoparticles for energy storage , 2013 .

[237]  Soojin Park,et al.  High-performance porous silicon monoxide anodes synthesized via metal-assisted chemical etching , 2013 .

[238]  Xinyue Zhao,et al.  Nano-silicon composites using poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) as elastic polymer matrix and carbon source for lithium-ion battery anode , 2012 .

[239]  J. L. Gómez‐Cámer,et al.  Anchoring Si nanoparticles to carbon nanofibers: an efficient procedure for improving Si performance in Li batteries , 2011 .

[240]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.