Modulating Electrochemical CO2 Reduction Performance via Sulfur-Containing Linkages Engineering in Metallophthalocyanine Based Covalent Organic Frameworks

[1]  Shuliang Yang,et al.  A hydrophobic Cu/Cu2O sheet catalyst for selective electroreduction of CO to ethanol , 2023, Nature Communications.

[2]  L. Lim,et al.  Electroactive Biomaterials for Facilitating Bone Defect Repair under Pathological Conditions , 2022, Advanced science.

[3]  Shijie Ren,et al.  Isomeric Oligo(Phenylenevinylene)-Based Covalent Organic Frameworks with Different Orientation of Imine Bonds and Distinct Photocatalytic Activities. , 2022, Angewandte Chemie.

[4]  Qiao Wu,et al.  Boosting Electroreduction of CO2 over Cationic Covalent Organic Frameworks: Hydrogen Bonding Effects of Halogen Ions. , 2022, Angewandte Chemie.

[5]  Xin Chen,et al.  Piperazine-Linked Metalphthalocyanine Frameworks for Highly Efficient Visible-Light-Driven H2O2 Photosynthesis. , 2022, Journal of the American Chemical Society.

[6]  Gaofeng Zeng,et al.  Construction of Catalytic Covalent Organic Frameworks with Redox-Active Sites for the Oxygen Reduction and the Oxygen Evolution Reaction. , 2022, Angewandte Chemie.

[7]  Jinlong Yang,et al.  Mechanistic insights into CO2 conversion chemistry of copper bis-(terpyridine) molecular electrocatalyst using accessible operando spectrochemistry , 2022, Nature Communications.

[8]  Jia Guo,et al.  The effect of enantioselective chiral covalent organic frameworks and cysteine sacrificial donors on photocatalytic hydrogen evolution , 2022, Nature Communications.

[9]  Fancheng Meng,et al.  2,4,6-Trimethylpyridine-Derived Vinylene-Linked Covalent Organic Frameworks for Confined Catalytic Esterification. , 2022, Angewandte Chemie.

[10]  Shunli Li,et al.  A Honeycomb‐Like Porous Crystalline Hetero‐Electrocatalyst for Efficient Electrocatalytic CO2 Reduction , 2022, Advanced materials.

[11]  D. Jiang,et al.  Bottom‐Up Interfacial Design of Covalent Organic Frameworks for Highly Efficient and Selective Electrocatalysis of CO2 , 2022, Advanced materials.

[12]  M. Robert,et al.  Confined molecular catalysts provide an alternative interpretation to the electrochemically reversible demetallation of copper complexes , 2022, Nature Communications.

[13]  Chang He,et al.  A CO2-Masked Carbene Functionalized Covalent Organic Framework for Highly Efficient Carbon Dioxide Conversion. , 2022, Angewandte Chemie.

[14]  Ying Zang,et al.  Covalent organic frameworks: a new platform for next-generation batteries of Na-, K- and Zn-ions. , 2022, Science bulletin.

[15]  Pei‐Qin Liao,et al.  A Stable and Conductive Covalent Organic Framework with Isolated Active Sites for Highly Selective Electroreduction of Carbon Dioxide to Acetate. , 2022, Angewandte Chemie.

[16]  Y. Lan,et al.  Nickel Glyoximate Based Metal-Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Evolution. , 2022, Angewandte Chemie.

[17]  Guolong Xing,et al.  Linkages take charge , 2022, Nature Synthesis.

[18]  Hongbo Zhang,et al.  Chemically Stable Guanidinium Covalent Organic Framework for the Efficient Capture of Low-Concentration Iodine at High Temperatures. , 2022, Journal of the American Chemical Society.

[19]  Zhifang Wang,et al.  Bottom-Up Synthesis of 8-Connected Three-Dimensional Covalent Organic Frameworks for Highly Efficient Ethylene/Ethane Separation. , 2022, Journal of the American Chemical Society.

[20]  W. Chen,et al.  Superhydrophilic 2D Covalent Organic Frameworks as Broadband Absorbers for Efficient Solar Steam Generation. , 2022, Angewandte Chemie.

[21]  Jinming Cai,et al.  Nonplanar Rhombus and Kagome 2D Covalent Organic Frameworks from Distorted Aromatics for Electrical Conduction. , 2022, Journal of the American Chemical Society.

[22]  Hanying Li,et al.  Piperazine-Linked Covalent Organic Frameworks with High Electrical Conductivity. , 2022, Journal of the American Chemical Society.

[23]  D. Jiang,et al.  Water cluster in hydrophobic crystalline porous covalent organic frameworks , 2021, Nature Communications.

[24]  A. Krasheninnikov,et al.  Boosting the Electrocatalytic Conversion of Nitrogen to Ammonia on Metal-Phthalocyanine-Based Two-Dimensional Conjugated Covalent Organic Frameworks. , 2021, Journal of the American Chemical Society.

[25]  Hongzheng Chen,et al.  Stable Bimetallic Polyphthalocyanine Covalent Organic Frameworks as Superior Electrocatalysts. , 2021, Journal of the American Chemical Society.

[26]  Q. Zheng,et al.  Chemically Stable Polyarylether-Based Metallophthalocyanine Frameworks with High Carrier Mobilities for Capacitive Energy Storage. , 2021, Journal of the American Chemical Society.

[27]  Qiang Zhang,et al.  Adjacent Atomic Pt Site Enables Single-Atom Iron with High Oxygen Reduction Reaction Performance. , 2021, Angewandte Chemie.

[28]  Wei Zhou,et al.  Two-Dimensional Covalent Organic Frameworks with Cobalt(II)-Phthalocyanine Sites for Efficient Electrocatalytic Carbon Dioxide Reduction. , 2021, Journal of the American Chemical Society.

[29]  Fancheng Meng,et al.  Synthesis of Ionic Vinylene-Linked Covalent Organic Frameworks through Quaternization-Activated Knoevenagel Condensation. , 2021, Angewandte Chemie.

[30]  R. Zenobi,et al.  Immobilization of molecular catalysts on electrode surfaces using host–guest interactions , 2021, Nature Chemistry.

[31]  Xu‐Bing Li,et al.  Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution , 2021, Nature Communications.

[32]  Hongzheng Chen,et al.  Conductive Metallophthalocyanine Framework Films with High Carrier Mobility as Efficient Chemiresistors. , 2021, Angewandte Chemie.

[33]  Kai A. I. Zhang,et al.  Covalent Organic Frameworks Enabling Site-Isolation of Viologen-Derived Electron Transfer Mediators for Stable Photocatalytic Hydrogen Evolution. , 2021, Angewandte Chemie.

[34]  Weiyang Li,et al.  Hierarchical Tuning of the Performance of Electrochemical Carbon Dioxide Reduction Using Conductive Two-Dimensional Metallophthalocyanine Based Metal-Organic Frameworks. , 2020, Journal of the American Chemical Society.

[35]  Jiang Liu,et al.  Ultrastable Dioxin-Linked Metallophthalocyanine Covalent Organic Frameworks as Photo-Coupled Electrocatalysts for CO2 Reduction. , 2020, Angewandte Chemie.

[36]  Jun Liang,et al.  Construction of Donor-Acceptor Heterojunctions in Covalent Organic Framework for Enhanced CO2 Electroreduction. , 2020, Small.

[37]  Fan Zhang,et al.  Vinylene-Linked Covalent Organic Frameworks with Symmetry-Tuned Polarity and Photocatalytic Activity. , 2020, Angewandte Chemie.

[38]  O. Terasaki,et al.  Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction , 2020, Nature.

[39]  Xintao Wu,et al.  Efficient Carbon Dioxide Electroreduction over Ultrathin Covalent Organic Framework Nanolayers with Isolated Cobalt Porphyrin Units. , 2020, ACS applied materials & interfaces.

[40]  Xiang Yu,et al.  Skeleton Engineering of Isostructural 2D Covalent Organic Frameworks: Orthoquinone Redox-Active Sites Enhanced Energy Storage , 2020 .

[41]  D. Jiang,et al.  A Stable and Conductive Metallophthalocyanine Framework for Electrocatalytic Carbon Dioxide Reduction in Water. , 2020, Angewandte Chemie.

[42]  R. Cao,et al.  Integration of Strong Electron Transporter Tetrathiafulvalene into Metalloporphyrin-Based Covalent Organic Framework for Highly Efficient Electroreduction of CO2 , 2020 .

[43]  Y. Kan,et al.  Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction , 2020, Nature Communications.

[44]  M. Bonn,et al.  Unveiling Electronic Properties in Metal-Phthalocyanine-based Pyrazine-linked Conjugated Two-Dimensional Covalent Organic Frameworks. , 2019, Journal of the American Chemical Society.

[45]  Fan Zhang,et al.  Semiconducting 2D Triazine-Cored Covalent Organic Frameworks with Unsubstituted Olefin Linkages. , 2019, Journal of the American Chemical Society.

[46]  Peng Yang,et al.  Stable Radical Cations-Containing Covalent Organic Frameworks Exhibiting Remarkable Structure-Enhanced Photothermal Conversion. , 2019, Journal of the American Chemical Society.

[47]  P. Ajayan,et al.  High‐Lithium‐Affinity Chemically Exfoliated 2D Covalent Organic Frameworks , 2019, Advanced materials.

[48]  Christopher J. Chang,et al.  Iron Porphyrins Embedded into a Supramolecular Porous Organic Cage for Electrochemical CO2 Reduction in Water. , 2018, Angewandte Chemie.

[49]  Banglin Chen,et al.  Reducing CO2 with Stable Covalent Organic Frameworks , 2018 .

[50]  Yadong Li,et al.  Design of Single-Atom Co-N5 Catalytic Site: A Robust Electrocatalyst for CO2 Reduction with Nearly 100% CO Selectivity and Remarkable Stability. , 2018, Journal of the American Chemical Society.

[51]  Dean J. Miller,et al.  Supported Cobalt Polyphthalocyanine for High-Performance Electrocatalytic CO2 Reduction , 2017 .

[52]  Hailiang Wang,et al.  Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures , 2017, Nature Communications.

[53]  Claudio Cometto,et al.  Electrons, Photons, Protons and Earth-Abundant Metal Complexes for Molecular Catalysis of CO2 Reduction , 2017 .

[54]  Yi Luo,et al.  Visible-Light Photoreduction of CO2 in a Metal-Organic Framework: Boosting Electron-Hole Separation via Electron Trap States. , 2015, Journal of the American Chemical Society.

[55]  P. Yang,et al.  Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water , 2015, Science.

[56]  M. Mecklenburg,et al.  Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water. , 2015, Journal of the American Chemical Society.

[57]  Mariko Miyachi,et al.  π-Conjugated nickel bis(dithiolene) complex nanosheet. , 2013, Journal of the American Chemical Society.