Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes

The importance of mycorrhizas in heathland and boreal forest biomes, which together cover much of the landmass of the Northern Hemisphere and store most of the global stocks of carbon, is reviewed. The taxonomic affinities of the organisms forming these symbiotic partnerships are assessed, and the distinctive structural features of the ericoid mycorrhizas of heathland dwarf shrubs and the ectomycorrhizas of boreal forest trees are described. It is stressed that neither in terms of the geographical distribution of the plants nor in terms of the occurrence of their characteristic mycorrhizas in the soil profile should these biomes be considered to be mutually exclusive. What unites them is their apparent affinity for acidic organic soils of inherently low accessibility of the major nutrients nitrogen (N) and phosphorus (P). These properties relate directly to the nature of the nutrient-poor recalcitrant litter produced by their host plants and through positive-feedback mechanisms that are reinforced by sele...

[1]  G. Zancan,et al.  Physiology of exolaccase production by Thelephora terrestris , 1998 .

[2]  B. Kieliszewska-Rokicka Effect of nitrogen level on acid phosphatase activity of eight isolates of ectomycorrhizal fungus Paxillus involutus cultured in vitro , 2004, Plant and Soil.

[3]  J. Cairney,et al.  The effect of temperature and inorganic phosphorus supply on growth and acid phosphatase production in arctic and temperate strains of ectomycorrhizal Hebeloma spp. in axenic culture , 1998 .

[4]  D. Read Pezizella ericae sp.nov., the perfect state of a typical mycorrhizal endophyte of ericaceae , 1974 .

[5]  H. Persson,et al.  Root Growth and Response to Nitrogen , 2000 .

[6]  J. Pérez‐Moreno,et al.  Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants , 2000 .

[7]  T. Bruns,et al.  Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities , 1999, Molecular ecology.

[8]  M. Hart,et al.  Food-web dynamics: Animal nitrogen swap for plant carbon , 2001, Nature.

[9]  J. Coisson,et al.  Production of pectin-degrading enzymes by ericoid mycorrhizal fungi. , 1997, The New phytologist.

[10]  Knute J. Nadelhoffer,et al.  Belowground Carbon Allocation in Forest Ecosystems: Global Trends , 1989 .

[11]  K. Yoshikawa,et al.  Productivity of hydrolytic enzymes by mycorrhizal mushrooms , 1995 .

[12]  J. Cairney,et al.  Purification and characterization of a β-1,4-endoxylanase from the ericoid mycorrhizal fungus Hymenoscyphus ericae , 1997 .

[13]  Randy A. Dahlgren,et al.  Polyphenol control of nitrogen release from pine litter , 1995, Nature.

[14]  L. J. Hutchison Studies on the systematics of ectomycorrhizal fungi in axenic culture. II. The enzymatic degradation of selected carbon and nitrogen compounds , 1990 .

[15]  Ernst-Detlef Schulze,et al.  Carbon and Nitrogen Cycling in European Forest Ecosystems , 2000, Ecological Studies.

[16]  F. Meyer Extreme Standorte und Ektomykorrhiza (inbesondere Cenococcum geophilum) , 1987 .

[17]  P. Kotanen,et al.  LOGS AS REFUGES FROM FUNGAL PATHOGENS FOR SEEDS OF EASTERN HEMLOCK (TSUGA CANADENSIS) , 2004 .

[18]  P. Högberg,et al.  SOIL CHEMISTRY AND PLANTS IN FENNOSCANDIAN BOREAL FOREST AS EXEMPLIFIED BY A LOCAL GRADIENT , 1998 .

[19]  A. Dahlberg Community ecology of ectomycorrhizal fungi: an advancing interdisciplinary field , 2001 .

[20]  D. Read,et al.  The effects of phenolic compounds on nitrogen mobilisation by ericoid mycorrhizal systems , 1990 .

[21]  T. Bruns,et al.  Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above- and below-ground views , 1996 .

[22]  L. Tedersoo,et al.  Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. , 2003, The New phytologist.

[23]  J. Fortin,et al.  Dependence of Laccaria bicolor basidiome development on current photosynthesis of Pinus strobus seedlings , 1994 .

[24]  D. Read,et al.  The biology of mycorrhiza in the Ericaceae. XX. Plant and mycorrhizal necromass as nitrogenous substrates for the ericoid mycorrhizal fungus Hymenoscyphus ericae and its host , 1998 .

[25]  H. Burgeff,et al.  Mikrobiologie des Hochmoores , 1963 .

[26]  S. Perotto,et al.  Molecular diversity of fungi from ericoid mycorrhizal roots , 1996 .

[27]  Damian P. Donnelly,et al.  Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labeling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposer fungus. , 2001, Tree physiology.

[28]  I. Levisohn,et al.  Production of Synthetic Mycorrhiza in the Cultivated Cranberry , 1940, Nature.

[29]  S. Perotto,et al.  Cell surface in Calluna vulgaris L. hair roots. In situ localization of polysaccharidic components. , 1990 .

[30]  R. Sinsabaugh,et al.  Phosphatase activities and phosphorus uptake from inositol phosphate by ectomycorrhizal fungi , 1992 .

[31]  T. Bruns,et al.  The molecular revolution in ectomycorrhizal ecology: peeking into the black‐box , 2001, Molecular ecology.

[32]  J. Pérez‐Moreno,et al.  Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance? , 2003, The New phytologist.

[33]  A. Fitter Darkness visible: reflections on underground ecology , 2005 .

[34]  W. Boer,et al.  Fungal biomass development in a chronosequence of land abandonment , 2006 .

[35]  D. Read,et al.  The structure and function of the vegetative mycelium of ectomycorrhizal plants. VI: Activities of nutrient mobilizing enzymes in birch litter colonized by Paxillus involutus (Fr.) Fr , 1995 .

[36]  E. Priesack,et al.  The plant's capacity in regulating resource demand. , 2005, Plant biology.

[37]  H. H. Krause,et al.  Growth characteristics of Laccaria laccata and Paxillus involutus in liquid culture media with inorganic and organic phosphorus sources , 1989 .

[38]  M. Chalot,et al.  Factors affecting amino-acid-uptake by the ectomycorrhizal fungus Paxillus involutus , 1995 .

[39]  J. Leake,et al.  Phosphodiesterase as mycorrhizal P sources: I. Phosphodiesterase production and the utilization of DNA as a phosphorus source by the ericoid mycorrhizal fungus Hymenoscyphus ericae. , 1996, The New phytologist.

[40]  D. Read,et al.  The biology of mycorrhiza in the Ericaceae: XIX. Fungal mycelium as a nitrogen source for the ericoid mycorrhizal fungus Hymenoscyphus ericae and its host plants. , 1997, The New phytologist.

[41]  J. Cairney,et al.  Biology of mycorrhizal associations of epacrids (Ericaceae). , 2002, The New phytologist.

[42]  D. Read The Structure and Function of the Ericoid Mycorrhizal Root , 1996 .

[43]  D. Read,et al.  The biology of mycorrhiza in the ericaceae. XII: Quantitative analysis of individual free amino acids in relation to time and depth in the soil profile , 1988 .

[44]  J. Cairney,et al.  Identification of genes for lignin peroxidases and manganese peroxidases in ectomycorrhizal fungi. , 2001, The New phytologist.

[45]  D. Read,et al.  THE ROLE OF PROTEINS IN THE NITROGEN NUTRITION OF ECTOMYCORRHIZAL PLANTS , 1986 .

[46]  G. Dimbleby NATURAL REGENERATION OF PINE AND BIRCH ON THE HEATHER MOORS OF NORTH-EAST YORKSHIRE , 1953 .

[47]  P. Högberg,et al.  Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs - a hypothesis based on field observations in boreal forest. , 2003, The New phytologist.

[48]  D. Read,et al.  The biology of mycorrhiza in the Ericaceae. XVIII. Chitin degradation by Hymenoscyphus ericae and transfer of chitin-nitrogen to the host plant. , 1995 .

[49]  T. Kuyper,et al.  Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. , 2003, The New phytologist.

[50]  S. Hambleton,et al.  The genus Oidiodendron: species delimitation and phylogenetic relationships based on nuclear ribosomal DNA analysis , 1998 .

[51]  Weiguo Cao,et al.  Carbon nutrition and hydrolytic and cellulolytic activities in the ectomycorrhizal fungus Pisolithus tinctorius , 1993 .

[52]  J. Cunnington,et al.  Molecular diversity within and between ericoid endophytes from the Ericaceae and Epacridaceae , 1999 .

[53]  J. Cairney,et al.  Carbohydrolase production by the ericoid mycorrhizal fungus Hymenoscyphus ericae under solid-state fermentation conditions , 1997 .

[54]  E. Bååth,et al.  Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. , 2001, New Phytologist.

[55]  Alf Ekblad,et al.  Boreal forest plants take up organic nitrogen , 1998, Nature.

[56]  N. Malmer,et al.  Interferences between Sphagnum and vascular plants: effects on plant community structure and peat formation , 2003 .

[57]  D. Read,et al.  Kinetics of amino acid uptake by ectomycorrhizal roots , 1999 .

[58]  H. Persson The distribution and productivity of fine roots in boreal forests , 1983, Plant and Soil.

[59]  J. Cairney,et al.  Fungal enzymes degrading plant cell walls: their possible significance in the ectomycorrhizal symbiosis , 1994 .

[60]  J. Pérez‐Moreno,et al.  Exploitation of pollen by mycorrhizal mycelial systems with special reference to nutrient recycling in boreal forests , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[61]  J. Cairney,et al.  Genetic diversity of root-associated fungal endophytes from Calluna vulgaris at contrasting field sites. , 2000, The New phytologist.

[62]  I. Alexander,et al.  Demography and population dynamics of ectomycorrhizas of sitka spruce fertilized with N , 1990 .

[63]  P. Högberg,et al.  Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. , 2002, The New phytologist.

[64]  D. Read,et al.  Proteinase activity in mycorrhizal fungi: I. The effect of extracellular pH on the production and activity of proteinase by ericoid endophytes from soils of contrasted pH. , 1990, The New phytologist.

[65]  C. Reid,et al.  The growth of selected mycorrhizal fungi in response to induced water stress , 1973 .

[66]  F. Berendse,et al.  Litter decomposability: a neglected component of plant fitness. , 1994 .

[67]  F. Martin,et al.  Fungal Diversity in Ectomycorrhizal Communities of Norway Spruce [ Picea abies (L.) Karst.] and Beech ( Fagus sylvatica L.) Along North-South Transects in Europe , 2000 .

[68]  J. Entry,et al.  Litter decomposition and nutrient release in ectomycorrhizal mat soils of a Douglas fir ecosystem , 1991 .

[69]  A. Varma,et al.  Utilization of Cell-Wall Related Carbohydrates by Ericoid Mycorrhizal Endophytes , 1994 .

[70]  B. Söderström,et al.  Effects of liming on the uptake of organic and inorganic nitrogen by mycorrhizal (Paxillus involutus) and non-mycorrhizal Pinus sylvestris plants , 1997 .

[71]  D. Read,et al.  THE ROLE OF PROTEINS IN THE NITROGEN NUTRITION OF ECTOMYCORRHIZAL PLANTS. I. UTILIZATION OF PEPTIDES AND PROTEINS BY ECTOMYCORRHIZAL FUNGI , 1986 .

[72]  J. Cairney,et al.  Temperature regulation of extracellular proteases in ectomycorrhizal fungi (Hebeloma spp.) grown in axenic culture , 1999 .

[73]  N. Buchmann,et al.  Large-scale forest girdling shows that current photosynthesis drives soil respiration , 2001, Nature.

[74]  B. Lindahl,et al.  Translocation of 32P between interacting mycelia of a wood‐decomposing fungus and ectomycorrhizal fungi in microcosm systems , 1999 .

[75]  D. Read,et al.  Mycorrhizas in ecosystems , 1991, Experientia.

[76]  R. Ruess,et al.  Contributions of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior , 1996 .

[77]  B. Berg,et al.  Leaching, accumulation and release of nitrogen in decomposing forest litter , 1981 .

[78]  G. Xiao,et al.  Organic nitrogen use by salal ericoid mycorrhizal fungi from northern Vancouver Island and impacts on growth in vitro of Gaultheria shallon , 1999, Mycorrhiza.

[79]  D. Read,et al.  EXPERIMENTS WITH ERICOID MYCORRHIZA , 1991 .

[80]  B. Kropp Variation in acid phosphatase activity among progeny from controlled crosses in the ectomycorrhizal fungus Laccaria bicolor. , 1990 .

[81]  Y. Dalpé,et al.  AXENIC SYNTHESIS OF ERICOID MYCORRHIZA IN VACCINIUM ANGUSTIFOLIUM AIT. BY OIDIODENDRON SPECIES , 1986 .

[82]  J. Cairney,et al.  Carbohydrate oxidases in ericoid and ectomycorrhizal fungi: a possible source of Fenton radicals during the degradation of lignocellulose , 1998 .

[83]  K. Kielland Landscape patterns of free amino acids in arctic tundra soils , 1995 .

[84]  R. Aerts,et al.  Nutritional constraints on Sphagnum‐growth and potential decay in northern peatlands , 2001 .

[85]  F. Chapin,et al.  Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge , 1993, Nature.

[86]  D. Read,et al.  Effects of the soluble polyphenol tannic acid on the activities of ericoid and ectomycorrhizal fungi , 1996 .

[87]  D. Read,et al.  Chitin as a nitrogen source for mycorrhizal fungi , 1990 .

[88]  K. Cullings Single phylogenetic origin of ericoid mycorrhizae within the Ericaceae , 1996 .

[89]  R. Whittaker Communities and Ecosystems , 1975 .

[90]  D. Read,et al.  THE BIOLOGY OF MYCORRHIZA IN THE ERICACEAE: X. THE UTILIZATION OF PROTEINS AND THE PRODUCTION OF PROTEOLYTIC ENZYMES BY THE MYCORRHIZAL ENDOPHYTE AND BY MYCORRHIZAL PLANTS. , 1985, The New phytologist.

[91]  R. Molina Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications , 1992 .

[92]  L. Domínguez,et al.  'Prepackaged symbioses': propagules on roots of the myco-heterotrophic plant Arachnitis uniflora. , 2006, The New phytologist.

[93]  J. Schimel,et al.  NITROGEN MINERALIZATION: CHALLENGES OF A CHANGING PARADIGM , 2004 .

[94]  Leslie A. Viereck,et al.  Productivity and nutrient cycling in taiga forest ecosystems , 1983 .

[95]  J. Cairney,et al.  Utilization of organic nitrogen by ectomycorrhizal fungi (Hebeloma spp.) of arctic and temperate origin , 1998 .

[96]  O. Laiho Paxillus involutus as a mycorrhizal symbiont of forest trees. , 1970 .

[97]  J. Cairney,et al.  Extracellular enzyme activities of the ericoid mycorrhizal endophyte Hymenoscyphus ericae (Read) Korf & Kernan: their likely roles in decomposition of dead plant tissue in soil , 1998, Plant and Soil.

[98]  E. Dambrine,et al.  Soil Nitrogen Turnover — Mineralisation, Nitrification and Denitrification in European Forest Soils , 2000 .

[99]  R. Koide,et al.  Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. , 2002, The New phytologist.

[100]  Andy F. S. Taylor,et al.  Diversity and abundance of resupinate thelephoroid fungi as ectomycorrhizal symbionts in Swedish boreal forests , 2000, Molecular ecology.

[101]  J. Cairney,et al.  Utilisation of organic nitrogen and phosphorus sources by mycorrhizal endophytes of Woollsia pungens (Cav.) F. Muell. (Epacridaceae) , 1999, Mycorrhiza.

[102]  E. Odum Fundamentals of ecology , 1972 .

[103]  W. Reiners Ecology of a heath-shrub synusia in the pine barrens of Long Island , 1965 .

[104]  D. Read,et al.  Degradation of 14C-labelled lignin and dehydropolymer of coniferyl alcohol by ericoid and ectomycorrhizal fungi , 1990, Archives of Microbiology.

[105]  R. Koide,et al.  Exploring interactions between saprotrophic microbes and ectomycorrhizal fungi using a protein-tannin complex as an N source by red pine (Pinus resinosa). , 2003, The New phytologist.

[106]  R. Sen Isozymic identification of individual ectomycorrhizas synthesized between Scots pine (Pinus sylvestris L.) and isolates of two species of Suillus , 1990 .

[107]  R. Sen Intraspecific variation in two species of Suillus from scots pine (Pinus sylvestris L.) forests based on somatic incompatibility and isozyme analyses , 1990 .

[108]  J. Fortin,et al.  Effects of nitrogen fertilization and photoperiod on basidiome formation of Laccaria bicolor associated with container-grown jack pine seedlings , 1992 .

[109]  P. Maijala,et al.  Detection of extracellular cellulolytic and proteolytic activity in ectomycorrhizal fungi and Heterobasidion annosum (Fr.) Bref. , 1991 .

[110]  H. Wallander,et al.  The production of ectomycorrhizal mycelium in forests: Relation between forest nutrient status and local mineral sources , 2003, Plant and Soil.

[111]  D. Read,et al.  The biology of mycorrhiza in the Ericaceae , 1973 .

[112]  J. Colpaert,et al.  A comparison of the extracellular enzyme activities of two ectomycorrhizal and a leaf‐saprotrophic basidiomycete colonizing beech leaf litter , 1996 .

[113]  C. Gimingham,et al.  Ecology of Heathlands , 1974 .

[114]  K. Saikkonen,et al.  SEVERE DEFOLIATION OF SCOTS PINE REDUCES REPRODUCTIVE INVESTMENT BY ECTOMYCORRHIZAL SYMBIONTS , 2003 .

[115]  R. Aerts The Role of Various Types of Mycorrhizal Fungi in Nutrient Cycling and Plant Competition , 2003 .

[116]  R. Ruess,et al.  Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska , 2003 .

[117]  M. Berbee,et al.  Molecular diversity of ericoid mycorrhizal fungi , 1999 .

[118]  D. Read,et al.  Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi , 1997 .

[119]  B. Botton,et al.  Production and characterization of exocellular proteases in ectomycorrhizal fungi , 1989 .

[120]  C. J. Straker,et al.  Occurrence and expression of acid phosphatase of Hymenoscyphus ericae (Read) Korf & Kernan, in isolation or associated with plant roots , 1992, Mycorrhiza.

[121]  K. Egger Molecular analysis of ectomycorrhizal fungal communities , 1995 .

[122]  J. Colpaert,et al.  Decomposition, nitrogen and phosphorus mineralization from beech leaf litter colonized by ectomycorrhizal or litter-decomposing basidiomycetes , 1996 .

[123]  G. Kernaghan Mycorrhizal diversity: Cause and effect? , 2005 .

[124]  T. Günther,et al.  Activities of phenol oxidizing enzymes of ectomycorrhizal fungi in axenic culture and in symbiosis with Scots pine (Pinus sylvestris L.) , 1998 .

[125]  D. Read,et al.  Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi , 1996 .

[126]  L. J. Hutchison STUDIES ON THE SYSTEMATICS OF ECTOMYCORRHIZAL FUNGI IN AXENIC CULTURE. III. PATTERNS OF POLYPHENOL OXIDASE ACTIVITY , 1990 .

[127]  M. Castellano,et al.  Fatty acid esterase production by ectomycorrhizal fungi , 1991 .

[128]  J. Pérez‐Moreno,et al.  Nutrient transfer from soil nematodes to plants: a direct pathway provided by the mycorrhizal mycelial network , 2001 .

[129]  R. Agerer Colour Atlas of Ectomycorrhizae , 1997 .

[130]  Damian P. Donnelly,et al.  Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning , 2004 .

[131]  J. Cairney,et al.  Molecular and biochemical evidence for manganese-dependent peroxidase activity in Tylospora fibrillosa , 1999 .

[132]  Å. Frostegård,et al.  Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. ex Loud. , 1992 .

[133]  L. Högbom,et al.  Nitrogen Uptake Processes in Roots and Mycorrhizas , 2000 .

[134]  M. Berbee,et al.  Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. , 2003, The New phytologist.

[135]  R. Koide,et al.  Ectomycorrhizas and retarded decomposition in a Pinus resinosa plantation , 2003 .

[136]  G. Xiao,et al.  Diversity and abundance of ericoid mycorrhizal fungi of Gaultheria shallon on forest clearcuts , 1996 .

[137]  Andy F. S. Taylor,et al.  Diversity of Ecto-mycorrhizal Fungal Communities in Relation to the Abiotic Environment , 2002 .

[138]  D. Read,et al.  Proteinase activity in mycorrhizal fungi III. , 1991 .

[139]  J. Leake,et al.  Phosphodiesters as mycorrhizal P sources: II. Ericoid mycorrhiza and the utilization of nuclei as a phosphorus and nitrogen source by Vaccinium macrocarpon. , 1996, The New phytologist.

[140]  J. Cairney,et al.  Molecular diversity of ericoid mycorrhizal endophytes isolated from Woollsia pungens , 1998 .

[141]  R. J. Olson,et al.  NET PRIMARY PRODUCTION AND CARBON ALLOCATION PATTERNS OF BOREAL FOREST ECOSYSTEMS , 2001 .

[142]  K. Egger,et al.  RELATEDNESS OF THE ERICOID ENDOPHYTES SCYTALIDIUM VACCINII AND HYMENOSCYPHUS ERICAE INFERRED FROM ANALYSIS OF RIBOSOMAL DNA , 1993 .

[143]  D. Read,et al.  The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. III: Protein utilization by Betula, Picea and Pinus in mycorrhizal association with Hebeloma crustuliniforme , 1986 .

[144]  Phylogenetic Relationships of Empetraceae, Epacridaceae, Ericaceae, Monotropaceae, and Pyrolaceae: Evidence from Nuclear Ribosomal 18s Sequence Data , 1996 .

[145]  W. Handley Mull and mor formation in relation to forest soils , 1955 .

[146]  D. Read,et al.  PHENOLIC COMPOSITION AND ITS SEASONAL-VARIATION IN CALLUNA-VULGARIS , 1982 .

[147]  D. Read,et al.  THE BIOLOGY OF MYCORRHIZA IN THE ERICACEAE: I. THE ISOLATION OF THE ENDOPHYTE AND SYNTHESIS OF MYCORRHIZAS IN ASEPTIC CULTURE , 1973 .

[148]  A. Brun,et al.  Metabolism of [C-14] glutamate and [C-14] glutamine by the ectomycorrhizal fungus Paxillus involutus , 1994 .

[149]  D. Read,et al.  The structure and function of the vegetative mycelium of ectomycorrhizal plants , 1995 .

[150]  K. Kielland Amino Acid Absorption by Arctic Plants: Implications for Plant Nutrition and Nitrogen Cycling , 1994 .

[151]  Hong Zhu,et al.  Purification and Characterization of an Extracellular Acid Proteinase from the Ectomycorrhizal Fungus Hebeloma crustuliniforme , 1990, Applied and environmental microbiology.