Unbiased Monte Carlo Cluster Updates with Autoregressive Neural Networks

Efficient sampling of complex high-dimensional probability densities is a central task in computational science. Machine Learning techniques based on autoregressive neural networks have been recently shown to provide good approximations of probability distributions of interest in physics. In this work, we propose a systematic way to remove the intrinsic bias associated with these variational approximations, combining it with Markov-chain Monte Carlo in an automatic scheme to efficiently generate cluster updates, which is particularly useful for models for which no efficient cluster update scheme is known. Our approach is based on symmetry-enforced cluster updates building on the neural-network representation of conditional probabilities. We demonstrate that such finite-cluster updates are crucial to circumvent ergodicity problems associated with global neural updates. We test our method for firstand second-order phase transitions in classical spin systems, proving in particular its viability for critical systems, or in the presence of metastable states.

[1]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[2]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[3]  W. Krauth Statistical Mechanics: Algorithms and Computations , 2006 .

[4]  S. Rychkov,et al.  Walking, weak first-order transitions, and complex CFTs , 2018, SciPost Physics.

[5]  Shinichi Nakajima,et al.  Asymptotically unbiased estimation of physical observables with neural samplers. , 2020, Physical review. E.

[6]  Walking, weak first-order transitions, and complex CFTs , 2018, Journal of High Energy Physics.

[7]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[8]  Stefano Ermon,et al.  A-NICE-MC: Adversarial Training for MCMC , 2017, NIPS.

[9]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[10]  Wang,et al.  Replica Monte Carlo simulation of spin glasses. , 1986, Physical review letters.

[11]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[12]  M. S. Albergo,et al.  Flow-based generative models for Markov chain Monte Carlo in lattice field theory , 2019, Physical Review D.

[13]  Liang Fu,et al.  Self-learning Monte Carlo with deep neural networks , 2018, Physical Review B.

[14]  J. Carrasquilla,et al.  Generative models for sampling of lattice field theories , 2020, 2012.01442.

[15]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[16]  Kurt Binder,et al.  Monte Carlo Simulation in Statistical Physics , 1992, Graduate Texts in Physics.

[17]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[18]  Michele Parrinello,et al.  Neural networks-based variationally enhanced sampling , 2019, Proceedings of the National Academy of Sciences.

[19]  F. Becca Quantum Monte Carlo Approaches for Correlated Systems , 2017 .

[20]  Erich Müller,et al.  Walking , 1872, Hall's journal of health.

[21]  H. J. Mclaughlin,et al.  Learn , 2002 .

[22]  Gurtej Kanwar,et al.  Flow-based sampling for multimodal distributions in lattice field theory , 2021, ArXiv.

[23]  Boris Svistunov,et al.  “Worm” algorithm in quantum Monte Carlo simulations☆ , 1998 .

[24]  Werner Krauth,et al.  Event-chain Monte Carlo algorithms for hard-sphere systems. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Robert L. Cook,et al.  Stochastic sampling in computer graphics , 1988, TOGS.

[26]  Dirk P. Kroese,et al.  Cross‐Entropy Method , 2011 .

[27]  D. A. Robertson,et al.  THE UNIVERSITY OF CHICAGO. , 1907, Science.

[28]  Lih-Yuan Deng,et al.  The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning , 2006, Technometrics.

[29]  STAT , 2019, Springer Reference Medizin.

[30]  Kenji Doya,et al.  Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning , 2017, Neural Networks.

[31]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[32]  W. Krauth Cluster Monte Carlo algorithms , 2003, cond-mat/0311623.

[33]  Jascha Sohl-Dickstein,et al.  Generalizing Hamiltonian Monte Carlo with Neural Networks , 2017, ICLR.

[34]  Florent Krzakala,et al.  Hiding Quiet Solutions in Random Constraint Satisfaction Problems , 2009, Physical review letters.

[35]  Hao Wu,et al.  Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning , 2018, Science.

[36]  Hugo Larochelle,et al.  Neural Autoregressive Distribution Estimation , 2016, J. Mach. Learn. Res..

[37]  W. Marsden I and J , 2012 .

[38]  S Pilati,et al.  Boosting Monte Carlo simulations of spin glasses using autoregressive neural networks. , 2020, Physical review. E.

[39]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[40]  Eyal Lubetzky,et al.  Mixing Times of Critical 2D Potts Models , 2016, 1607.02182.

[41]  Jess Banks,et al.  The Lovász Theta Function for Random Regular Graphs and Community Detection in the Hard Regime , 2017, APPROX-RANDOM.

[42]  K. Binder,et al.  Dynamic properties of the Monte Carlo method in statistical mechanics , 1973 .

[43]  Kurt Binder,et al.  Finite size effects at thermally-driven first order phase transitions: A phenomenological theory of the order parameter distribution , 1993 .

[44]  P. Alam ‘Z’ , 2021, Composites Engineering: An A–Z Guide.

[45]  Hugo Larochelle,et al.  The Neural Autoregressive Distribution Estimator , 2011, AISTATS.

[46]  Florent Krzakala,et al.  Statistical physics-based reconstruction in compressed sensing , 2011, ArXiv.

[47]  Vladlen Koltun,et al.  Multi-Scale Context Aggregation by Dilated Convolutions , 2015, ICLR.

[48]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[49]  Lei Wang,et al.  Solving Statistical Mechanics using Variational Autoregressive Networks , 2018, Physical review letters.

[50]  R. Sugar,et al.  Monte Carlo calculations of coupled boson-fermion systems. I , 1981 .

[51]  Zhecan Wang,et al.  Learning Visual Commonsense for Robust Scene Graph Generation , 2020, ECCV.

[52]  K. Binder Monte Carlo and molecular dynamics simulations in polymer science , 1995 .

[53]  Li Huang,et al.  Accelerated Monte Carlo simulations with restricted Boltzmann machines , 2016, 1610.02746.

[54]  Lei Wang,et al.  Neural Network Renormalization Group , 2018, Physical review letters.

[55]  Naftali Tishby,et al.  Machine learning and the physical sciences , 2019, Reviews of Modern Physics.

[56]  Wolff,et al.  Collective Monte Carlo updating for spin systems. , 1989, Physical review letters.

[57]  Yang Qi,et al.  Self-learning Monte Carlo method , 2016, 1610.03137.

[58]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[59]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[60]  Thomas Müller,et al.  Neural Importance Sampling , 2018, ACM Trans. Graph..