An Optimization Problem for Mass Transportation with Congested Dynamics
暂无分享,去创建一个
[1] Giuseppe Savaré,et al. A new class of transport distances between measures , 2008, 0803.1235.
[2] Yann Brenier,et al. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.
[3] Guillaume Carlier,et al. Optimal Transportation with Traffic Congestion and Wardrop Equilibria , 2006, SIAM J. Control. Optim..
[4] C. Villani. Topics in Optimal Transportation , 2003 .
[5] C. JIMENEZ. DYNAMIC FORMULATION OF OPTIMAL TRANSPORT PROBLEMS , 2006 .
[6] Guy Bouchitté,et al. Integral representation of convex functionals on a space of measures , 1988 .
[7] Olivier Pironneau,et al. A FICTITIOUS DOMAIN BASED GENERAL PDE SOLVER , 2004 .
[8] L. Evans,et al. Differential equations methods for the Monge-Kantorovich mass transfer problem , 1999 .
[9] Giuseppe Buttazzo,et al. OPTIMAL NETWORKS FOR MASS TRANSPORTATION PROBLEMS , 2004 .
[10] Eugene Stepanov,et al. Optimal Urban Networks via Mass Transportation , 2008 .
[11] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[12] Giuseppe M. Buttazzo,et al. A Model for the Optimal Planning of an Urban Area , 2005, SIAM J. Math. Anal..
[13] M. Fortin,et al. Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .
[14] Bertrand Maury,et al. Un Modèle de Mouvements de Foule , 2007 .
[15] Pierre Seppecher,et al. Energies with respect to a measure and applications to low dimensional structures , 1997 .
[16] Giuseppe Buttazzo,et al. Optimal Pricing Policies for Public Transportation Networks , 2006, SIAM J. Optim..
[17] Guy Bouchitté,et al. New lower semicontinuity results for nonconvex functionals defined on measures , 1990 .
[18] Pierre Seppecher,et al. Mathématiques/Mathematics Shape optimization solutions via Monge-Kantorovich equation , 1997 .
[19] Guy Bouchitté,et al. Integral representation of nonconvex functionals defined on measures , 1992 .
[20] G. Buttazzo,et al. Characterization of optimal shapes and masses through Monge-Kantorovich equation , 2001 .
[21] Yann Brenier,et al. Extended Monge-Kantorovich Theory , 2003 .