Molecular Aspects of Severe Malaria

SUMMARY Human infections with Plasmodium falciparum may result in severe forms of malaria. The widespread and rapid development of drug resistance in P. falciparum and the resistance of the disease-transmitting mosquitoes to insecticides make it urgent to understand the molecular background of the pathogenesis of malaria to enable the development of novel approaches to combat the disease. This review focuses on the molecular mechanisms of severe malaria caused by the P. falciparum parasite. The nature of severe malaria and the deleterious effects of parasite-derived toxins and host-induced cytokines are introduced. Sequestration, brought about by cytoadherence and rosetting, is linked to severe malaria and is mediated by multiple receptors on the endothelium and red blood cells. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is the ligand responsible for a majority of binding interactions, and the multiply adhesive features of this sticky molecule are presented. Antigenic variation is also a major feature of PfEMP1 and of the surface of the P. falciparum-infected erythrocyte. Possible mechanisms of P. falciparum antigenic variation in asexual stages are further discussed. We conclude this review with a perspective and suggestions of important aspects for future investigations.

[1]  M. Wahlgren,et al.  Multiple Adhesive Phenotypes Linked to Rosetting Binding of Erythrocytes in Plasmodium falciparum Malaria , 2000, Infection and Immunity.

[2]  M. Wahlgren,et al.  Rouleaux-forming serum proteins are involved in the rosetting of Plasmodium falciparum-infected erythrocytes. , 1999, Experimental parasitology.

[3]  M. Wahlgren,et al.  Small, Clonally Variant Antigens Expressed on the Surface of the Plasmodium falciparum–Infected Erythrocyte Are Encoded by the rif Gene Family and Are the Target of Human Immune Responses , 1999, The Journal of experimental medicine.

[4]  B. Gamain,et al.  Plasmodium falciparum domain mediating adhesion to chondroitin sulfate A: a receptor for human placental infection. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[5]  M. Aikawa,et al.  Plasmodium falciparum: detection of a novel asparagine-rich protein on the surface of sporozoite. , 1999, Experimental parasitology.

[6]  M. Wahlgren,et al.  Malaria: molecular and clinical aspects , 1999 .

[7]  Kevin Marsh,et al.  Clinical Features of Malaria , 1999 .

[8]  R. Gwilliam,et al.  The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum , 1999, Nature.

[9]  S. Kyes,et al.  Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[10]  M. Wahlgren,et al.  Role of glycans in Plasmodium falciparum infection. , 1999, Biochemical Society transactions.

[11]  A. Cowman,et al.  The adhesion of Plasmodium falciparum-infected erythrocytes to chondroitin sulfate A is mediated by P. falciparum erythrocyte membrane protein 1. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  P. Preiser,et al.  A rhoptry-protein-associated mechanism of clonal phenotypic variation in rodent malaria , 1999, Nature.

[13]  D. Gowda,et al.  Protein glycosylation in the malaria parasite. , 1999, Parasitology today.

[14]  M. Wahlgren,et al.  Waves of Malarial var-iations , 1999, Cell.

[15]  M. Galinski,et al.  Antigenic variation in malaria: a 3' genomic alteration associated with the expression of a P. knowlesi variant antigen. , 1999, Molecular cell.

[16]  M. Wahlgren,et al.  Plasmodium falciparum: molecular background to strain-specific rosette disruption by glycosaminoglycans and sulfated glycoconjugates. , 1999, Experimental parasitology.

[17]  A. Craig,et al.  Analysis of adhesive domains from the A4VAR Plasmodium falciparum erythrocyte membrane protein-1 identifies a CD36 binding domain. , 1998, Molecular and biochemical parasitology.

[18]  E V Koonin,et al.  Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. , 1998, Science.

[19]  M. Wahlgren,et al.  Age-Related Buildup of Humoral Immunity against Epitopes for Rosette Formation and Agglutination in African Areas of Malaria Endemicity , 1998, Infection and Immunity.

[20]  A. Scherf,et al.  Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra‐erythrocytic development in Plasmodium falciparum , 1998, The EMBO journal.

[21]  M Lanzer,et al.  Control of gene expression in Plasmodium falciparum. , 1998, Molecular and biochemical parasitology.

[22]  M. Wahlgren,et al.  The time course of cytoadhesion, immunoglobulin binding, rosette formation, and serum-induced agglutination of Plasmodium falciparum-infected erythrocytes. , 1998, The American journal of tropical medicine and hygiene.

[23]  M. Wahlgren,et al.  Erythrocyte glycans as Plasmodium Falciparum rosetting receptors : molecular background of strain specific rosette disruption by glycosaminoglycans and sulfated glycoconjugates , 1998 .

[24]  V. Nussenzweig,et al.  Adhesive proteins of the malaria parasite. , 1998, Current opinion in microbiology.

[25]  Mats Wahlgren,et al.  Developmental selection of var gene expression in Plasmodium falciparum , 1998, Nature.

[26]  A. Sahlén,et al.  Identification of Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) as the Rosetting Ligand of the Malaria Parasite P. falciparum , 1998, The Journal of experimental medicine.

[27]  M. Wahlgren,et al.  Extensive Immunoglobulin Binding of Plasmodium falciparum-Infected Erythrocytes in a Group of Children with Moderate Anemia , 1998, Infection and Immunity.

[28]  L. Wodicka,et al.  Genome-wide expression monitoring in Saccharomyces cerevisiae , 1997, Nature Biotechnology.

[29]  C. Newbold,et al.  Intercellular adhesion molecule-1 and CD36 synergize to mediate adherence of Plasmodium falciparum-infected erythrocytes to cultured human microvascular endothelial cells. , 1997, The Journal of clinical investigation.

[30]  C. Newbold,et al.  Failure to block adhesion of Plasmodium falciparum-infected erythrocytes to ICAM-1 with soluble ICAM-1 , 1997, Infection and immunity.

[31]  R. Udomsangpetch,et al.  Involvement of cytokines in the histopathology of cerebral malaria. , 1997, The American journal of tropical medicine and hygiene.

[32]  K. Silamut,et al.  Prognostic significance of reduced red blood cell deformability in severe falciparum malaria. , 1997, The American journal of tropical medicine and hygiene.

[33]  M. Foley,et al.  A second merozoite surface protein (MSP-4) of Plasmodium falciparum that contains an epidermal growth factor-like domain , 1997, Infection and immunity.

[34]  H. Singh,et al.  Identification of a region of PfEMP1 that mediates adherence of Plasmodium falciparum infected erythrocytes to CD36: conserved function with variant sequence. , 1997, Blood.

[35]  A. Craig,et al.  Receptor-specific adhesion and clinical disease in Plasmodium falciparum. , 1997, The American journal of tropical medicine and hygiene.

[36]  A. Craig,et al.  Genomic representation of var gene sequences in Plasmodium falciparum field isolates from different geographic regions. , 1997, Molecular and biochemical parasitology.

[37]  Yang,et al.  P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1 , 1997, Nature.

[38]  A. Cowman,et al.  The chromosomal organization of the Plasmodium falciparum var gene family is conserved. , 1997, Molecular and biochemical parasitology.

[39]  S. Pichyangkul,et al.  Activation of γδ T Cells in Malaria: Interaction of Cytokines and a Schizont-Associated Plasmodium falciparum Antigen , 1997 .

[40]  E. Bischoff,et al.  Evidence for distinct prototype sequences within the Plasmodium falciparum Pf60 multigene family. , 1997, Molecular and biochemical parasitology.

[41]  O. Mercereau‐Puijalon,et al.  A modification in restriction pattern of the Plasmodium falciparum Pf60 multigene family associated with a specific antigenic variation switch in the Palo Alto line. , 1997, Behring Institute Mitteilungen.

[42]  S. Rogerson,et al.  Chondroitin sulphate A as an adherence receptor for Plasmodium falciparum-infected erythrocytes. , 1997, Parasitology today.

[43]  D M Schmatz,et al.  Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[44]  John M. Barrie,et al.  The World Wide Web as an Instructional Tool , 1996, Science.

[45]  A. Cowman,et al.  The var genes of Plasmodium falciparum are located in the subtelomeric region of most chromosomes. , 1996, The EMBO journal.

[46]  N. Anstey,et al.  Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression , 1996, The Journal of experimental medicine.

[47]  N. Shen,et al.  Extensive polymorphisms observed in HIV–1 clade B protease gene using high–density oligonucleotide arrays , 1996, Nature Medicine.

[48]  X. Su,et al.  Current status of the Plasmodium falciparum genome project. , 1996, Molecular and biochemical parasitology.

[49]  Patrick E. Duffy,et al.  Adherence of Plasmodium falciparum to Chondroitin Sulfate A in the Human Placenta , 1996, Science.

[50]  A. Wolffe,et al.  Histone Deacetylase--A Regulator of Transcription , 1996, Science.

[51]  D. Baruch,et al.  Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[52]  M. Wahlgren,et al.  Novel fibrillar structure confers adhesive property to malaria–infected erythrocytes , 1996, Nature Medicine.

[53]  M. Aikawa,et al.  The molecular basis of pathogenesis of cerebral malaria. , 1996, Microbial pathogenesis.

[54]  T. Wellems,et al.  Membrane modifications in erythrocytes parasitized by Plasmodium falciparum. , 1996, Molecular and biochemical parasitology.

[55]  M. Hommel [Physiopathology of symptoms of malaria. Role of cytokines, cytoadherence and premunition]. , 1996, Presse medicale.

[56]  J. Abrams,et al.  Adhesion of Plasmodium Falciparwn‐lnfected Erythroeytes to Human Cells and Seeretion of Cytokines (IL‐1‐β, IL‐1RA, IL‐6, IL‐8, IL‐10, TGFβ, TNFα, G‐CSF, GM‐CSF) , 1995 .

[57]  T. Wellems,et al.  Isolation of multiple sequences from the Plasmodium falciparum genome that encode conserved domains homologous to those in erythrocyte-binding proteins. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Theodore F. Taraschi,et al.  Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes , 1995, Cell.

[59]  Joseph D. Smith,et al.  Switches in expression of plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes , 1995, Cell.

[60]  X. Su,et al.  The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of plasmodium falciparum-infected erythrocytes , 1995, Cell.

[61]  J C Reeder,et al.  Chondroitin sulfate A is a cell surface receptor for Plasmodium falciparum-infected erythrocytes , 1995, The Journal of experimental medicine.

[62]  A. Scherf,et al.  Chondroitin-4-sulphate (proteoglycan), a receptor for Plasmodium falciparum-infected erythrocyte adherence on brain microvascular endothelial cells. , 1995, Research in immunology.

[63]  C. Newbold,et al.  Plasmodium falciparum rosetting is associated with malaria severity in Kenya , 1995, Infection and immunity.

[64]  J. Taverne,et al.  Malaria: toxins, cytokines and disease , 1995, Parasite immunology.

[65]  B. Carcy,et al.  A 37-kilodalton glycoprotein of Babesia divergens is a major component of a protective fraction containing low-molecular-mass culture-derived exoantigens , 1995, Infection and immunity.

[66]  S. L. Le Blancq,et al.  Parasitism and chromosome dynamics in protozoan parasites: is there a connection? , 1995, Molecular and biochemical parasitology.

[67]  O. Mercereau‐Puijalon,et al.  A large multigene family expressed during the erythrocytic schizogony of Plasmodium falciparum. , 1994, Molecular and biochemical parasitology.

[68]  B. Nelson,et al.  Nitric oxide: cytokine-regulation of nitric oxide in host resistance to intracellular pathogens. , 1994, Immunology letters.

[69]  R. Coppel,et al.  Multiple ligands for cytoadherence can be present simultaneously on the surface of Plasmodium falciparum-infected erythrocytes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[70]  H. Webster,et al.  Plasmodium falciparum pigment induces monocytes to release high levels of tumor necrosis factor-alpha and interleukin-1 beta. , 1994, The American journal of tropical medicine and hygiene.

[71]  B. Chait,et al.  Structural and functional properties of region II-plus of the malaria circumsporozoite protein , 1994, The Journal of experimental medicine.

[72]  C. Chitnis,et al.  Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. , 1994, Science.

[73]  P. Gerold,et al.  Glycosylphosphatidylinositols synthesized by asexual erythrocytic stages of the malarial parasite, Plasmodium falciparum. Candidates for plasmodial glycosylphosphatidylinositol membrane anchor precursors and pathogenicity factors. , 1994, The Journal of biological chemistry.

[74]  D. Kwiatkowski,et al.  Anti-TNF therapy inhibits fever in cerebral malaria. , 1993, The Quarterly journal of medicine.

[75]  F. Hackett,et al.  Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites , 1993, The Journal of experimental medicine.

[76]  M. Wahlgren,et al.  Rosetting Plasmodium falciparum-infected erythrocytes express unique strain-specific antigens on their surface , 1993, Infection and immunity.

[77]  M. Wahlgren,et al.  Plasmodium falciparum erythrocyte rosetting is mediated by promiscuous lectin-like interactions , 1992, The Journal of experimental medicine.

[78]  C. Newbold,et al.  Plasmodium falciparum: the human agglutinating antibody response to the infected red cell surface is predominantly variant specific. , 1992, Experimental parasitology.

[79]  J. Barnwell,et al.  Involvement of CD36 on erythrocytes as a rosetting receptor for Plasmodium falciparum-infected erythrocytes. , 1992, Blood.

[80]  C. Benjamin,et al.  Human vascular endothelial cell adhesion receptors for Plasmodium falciparum-infected erythrocytes: roles for endothelial leukocyte adhesion molecule 1 and vascular cell adhesion molecule 1 , 1992, The Journal of experimental medicine.

[81]  R. Anders,et al.  Adherence of infected erythrocytes to venular endothelium selects for antigenic variants of Plasmodium falciparum. , 1992, Journal of immunology.

[82]  Kevin Marsh,et al.  Rapid switching to multiple antigenic and adhesive phenotypes in malaria , 1992, Nature.

[83]  M. Wahlgren,et al.  Disruption of Plasmodium falciparum erythrocyte rosettes by standard heparin and heparin devoid of anticoagulant activity. , 1992, The American journal of tropical medicine and hygiene.

[84]  D. Kwiatkowski,et al.  Rosette formation in Plasmodium falciparum isolates and anti-rosette activity of sera from Gambians with cerebral or uncomplicated malaria. , 1992, The American journal of tropical medicine and hygiene.

[85]  K. Mendis,et al.  Dynamics of fever and serum levels of tumor necrosis factor are closely associated during clinical paroxysms in Plasmodium vivax malaria. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[86]  A. Saul,et al.  APlasmodium falciparum exo‐antigen alters erythrocyte membrane deformability , 1991, FEBS letters.

[87]  C. Newbold,et al.  Protection by alpha-thalassaemia against Plasmodium falciparum malaria: modified surface antigen expression rather than impaired growth or cytoadherence. , 1991, Immunology letters.

[88]  M. Wahlgren,et al.  Plasmodium falciparum: an invasion inhibitory human monoclonal antibody is directed against a malarial glycolipid antigen. , 1991, Experimental parasitology.

[89]  K. Joiner,et al.  Why do so many surface proteins of trypanosomatids have GPI-anchors? , 1991, Cell biology international reports.

[90]  M. Wahlgren,et al.  Human cerebral malaria: association with erythrocyte rosetting and lack of anti-rosetting antibodies , 1990, The Lancet.

[91]  B. M. Greenwood,et al.  TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria , 1990, The Lancet.

[92]  D. Conway,et al.  Geographical distribution of Plasmodium falciparum erythrocyte rosetting and frequency of rosetting antibodies in human sera. , 1990, The American journal of tropical medicine and hygiene.

[93]  M. Wahlgren,et al.  Antibodies to a histidine-rich protein (PfHRP1) disrupt spontaneously formed Plasmodium falciparum erythrocyte rosettes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[94]  R. Howard,et al.  Molecular studies related to the pathogenesis of cerebral malaria. , 1989, Blood.

[95]  C. Newbold,et al.  Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum , 1989, Nature.

[96]  J. Barnwell,et al.  A human 88-kD membrane glycoprotein (CD36) functions in vitro as a receptor for a cytoadherence ligand on Plasmodium falciparum-infected erythrocytes. , 1989, The Journal of clinical investigation.

[97]  M. Wahlgren,et al.  Plasmodium falciparum-infected erythrocytes form spontaneous erythrocyte rosettes , 1989, The Journal of experimental medicine.

[98]  J. Playfair,et al.  Soluble malarial antigens are toxic and induce the production of tumour necrosis factor in vivo. , 1989, Immunology.

[99]  K. Mendis,et al.  Uninfected erythrocytes form "rosettes" around Plasmodium falciparum infected erythrocytes. , 1989, The American journal of tropical medicine and hygiene.

[100]  A. Cardin,et al.  Molecular Modeling of Protein‐Glycosaminoglycan Interactions , 1989, Arteriosclerosis.

[101]  L. Anderson,et al.  Cytoadherence by Plasmodium falciparum-infected erythrocytes is correlated with the expression of a family of variable proteins on infected erythrocytes , 1988, The Journal of experimental medicine.

[102]  M. Aikawa Human cerebral malaria. , 1988, The American journal of tropical medicine and hygiene.

[103]  L. Corcoran,et al.  Homologous recombination within subtelomeric repeat sequences generates chromosome size polymorphisms in P. falciparum , 1988, Cell.

[104]  R. Dwek,et al.  The glycosylphosphatidylinositol membrane anchor of Trypanosoma brucei variant surface glycoprotein. , 1988, Biochemical Society transactions.

[105]  K. Mendis,et al.  Rosetting: a new cytoadherence property of malaria-infected erythrocytes. , 1988, The American journal of tropical medicine and hygiene.

[106]  E. Rock,et al.  Two approximately 300 kilodalton Plasmodium falciparum proteins at the surface membrane of infected erythrocytes. , 1988, Molecular and biochemical parasitology.

[107]  K. Marsh,et al.  Parasite-infected-cell-agglutination and indirect immunofluorescence assays for detection of human serum antibodies bound to antigens on Plasmodium falciparum-infected erythrocytes. , 1986, Journal of immunological methods.

[108]  K. Marsh,et al.  Antigens induced on erythrocytes by P. falciparum: expression of diverse and conserved determinants. , 1986, Science.

[109]  David D. Roberts,et al.  Thrombospondin binds falciparum malaria parasitized erythrocytes and may mediate cytoadherence , 1985, Nature.

[110]  J. Barnwell,et al.  Monoclonal antibody OKM5 inhibits the in vitro binding of Plasmodium falciparum-infected erythrocytes to monocytes, endothelial, and C32 melanoma cells. , 1985, Journal of immunology.

[111]  N. White,et al.  Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. , 1985, The American journal of pathology.

[112]  S. Aley,et al.  Knob-positive and knob-negative Plasmodium falciparum differ in expression of a strain-specific malarial antigen on the surface of infected erythrocytes , 1984, The Journal of experimental medicine.

[113]  J. Barnwell,et al.  Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes , 1984, The Journal of experimental medicine.

[114]  J. Barnwell,et al.  Antigenic variation of Plasmodium knowlesi malaria: identification of the variant antigen on infected erythrocytes. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[115]  T. Chongsuphajaisiddhi Pathophysiology of malaria. , 1981, The Southeast Asian journal of tropical medicine and public health.

[116]  J. Haynes,et al.  Evidence for differences in erythrocyte surface receptors for the malarial parasites, Plasmodium falciparum and Plasmodium knowlesi , 1977, The Journal of experimental medicine.

[117]  L. Miller,et al.  Plasmodium falciparum malaria. Ultrastructure of parasitized erythrocytes in cardiac vessels. , 1971, The American journal of tropical medicine and hygiene.

[118]  I. N. Brown,et al.  Immunity to Malaria: Antigenic Variation in Chronic Infections of Plasmodium knowlesi , 1965, Nature.

[119]  C. Dolea,et al.  World Health Organization , 1949, International Organization.

[120]  P. Fischer,et al.  Short report: severe malaria associated with blood group. , 1998, The American journal of tropical medicine and hygiene.

[121]  M. Wahlgren,et al.  PECAM-1/CD31, an endothelial receptor for binding Plasmodium falciparum-infected erythrocytes. , 1997, Nature medicine.

[122]  C. Rogier,et al.  Severe malaria among children in a low seasonal transmission area, Dakar, Senegal: influence of age on clinical presentation. , 1997, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[123]  M. Alpers,et al.  Disruption of erythrocyte rosettes and agglutination of erythrocytes infected with Plasmodium falciparum by the sera of Papua New Guineans. , 1996, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[124]  M. Wahlgren,et al.  Adhesion of Plasmodium falciparum-infected erythrocytes to human cells and secretion of cytokines (IL-1-beta, IL-1RA, IL-6, IL-8, IL-10, TGF beta, TNF alpha, G-CSF, GM-CSF. , 1995, Scandinavian journal of immunology.

[125]  J. Foster,et al.  The Plasmodium falciparum genome project: A resource for researchers , 1995 .

[126]  I. Sherman,et al.  Anti-adhesive antibodies and peptides as potential therapeutics for Plasmodium falciparum malaria , 1995 .

[127]  M. Gentilini,et al.  Cytokines and T-cell response in malaria. , 1994, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[128]  P. Grellier,et al.  Characterization of a new 60 kDa apical protein of Plasmodium falciparum merozoite expressed in late schizogony , 1994, Biology of the cell.

[129]  J. Playfair,et al.  Tumour necrosis factor induction by malaria exoantigens depends upon phospholipid. , 1992, Immunology.

[130]  J. Szulmajster Protein folding , 1988, Bioscience reports.

[131]  K. Brown Antigenic variation in malaria. , 1977, Advances in experimental medicine and biology.