Two-color pump-probe interferometry of ultra-fast light-matter interaction

Two-color side-view probing of light-matter interaction from minute focal volume of a tightly focused fs-laser pump pulse reveals charge dynamics with high 0.9 μm optical resolution and approximately ~45fs temporal resolution defined by pulse duration. Use of two colors is advantageous for probing optically excited plasma regions with different density. Holographical digital focusing and spatial filtering were implemented to obtain the same resolution images for subsequent Fourier analysis. Fast plasma density decay with time constant ~150 fs was resolved and is consistent with self-trapping. Potential applications of an optical control over light-induced defects with deep-sub-wavelength resolution is discussed.

[1]  Stylianos Tzortzakis,et al.  In-line holography for the characterization of ultrafast laser filamentation in transparent media , 2008 .

[2]  W. Hsu,et al.  Au Nanoplasma as Efficient Hard X-ray Emission Source , 2016 .

[3]  L. Canioni,et al.  Dual-color control and inhibition of direct laser writing in silver-containing phosphate glasses. , 2015, Optics letters.

[4]  Saulius Juodkazis,et al.  Analysis of defects patterned by femtosecond pulses inside KBr and SiO2 glass , 2016 .

[5]  J. Goodman Introduction to Fourier optics , 1969 .

[6]  Hongchen Zhai,et al.  Pulsed digital holography system recording ultrafast process of the femtosecond order. , 2006, Optics letters.

[7]  S. Juodkazis,et al.  Nanoscale Precision of 3D Polymerization via Polarization Control , 2016, 1603.06748.

[8]  L. Rapp,et al.  High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams , 2016, Scientific Reports.

[9]  V. Sirutkaitis Time-Resolved Digital Holography in the Investigation of Ablation and Micro Fabrication by Femtosecond Pulses , 2013 .

[10]  Saulius Juodkazis,et al.  Ultrafast laser processing of materials: from science to industry , 2016, Light: Science & Applications.

[11]  K. Zhao,et al.  Tailoring a 67 attosecond pulse through advantageous phase-mismatch. , 2012, Optics letters.

[12]  R. Stoian,et al.  Spatio‐temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring , 2016 .

[13]  Jan Siegel,et al.  Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation , 2007 .

[14]  Maxime Jacquot,et al.  High aspect ratio nanochannel machining using single shot femtosecond Bessel beams , 2010 .

[15]  Saulius Juodkazis,et al.  Discrete damage traces from filamentation of Gauss-Bessel pulses. , 2006, Optics letters.

[16]  Demetri Psaltis,et al.  Holographic recording of fast phenomena , 2002 .

[17]  John M. Dudley,et al.  Tubular filamentation for laser material processing , 2015, Scientific Reports.

[18]  Laurent Gallais,et al.  Investigation of nanoprecursors threshold distribution in laser-damage testing , 2005 .

[19]  Thomas Pertsch,et al.  Energy deposition dynamics of femtosecond pulses in water , 2014, 1405.5378.

[20]  N. Šiaulys Time-Resolved Digital Holography in the Investigation of Ablation and Micro Fabrication by Femtosecond Pulses , 2013 .

[21]  Saulius Juodkazis,et al.  Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photorefractive crystal , 2010 .

[22]  M. Takeda,et al.  Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry , 1982 .

[23]  Valdas Sirutkaitis,et al.  Time-resolved off-axis digital holography for characterization of ultrafast phenomena in water. , 2008, Optics letters.

[24]  Saulius Juodkazis,et al.  Evidence of superdense synthesized by ultrafast microexplosion , 2011, Nature communications.

[25]  Razvan Stoian,et al.  Dynamics of femtosecond laser induced voidlike structures in fused silica , 2009 .

[26]  M. Baudisch,et al.  Ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene , 2016, Science.

[27]  Saulius Juodkazis,et al.  Void formation in glasses , 2007 .

[28]  S. Fourmaux,et al.  Non-thermal melting in semiconductors measured at femtosecond resolution , 2001, Nature.

[29]  Saulius Juodkazis,et al.  Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass. , 2011, Optics express.

[30]  Anton Rudenko,et al.  From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser , 2016 .

[31]  C. Carter,et al.  Science in Industry , 1919, Nature.

[32]  Saulius Juodkazis,et al.  Time-resolved axial-view of the dielectric breakdown under tight focusing in glass , 2011 .

[33]  Yi Liu,et al.  Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica. , 2005, Optics letters.

[34]  Junko Morikawa,et al.  FT-IR Image Processing Algorithms for In-Plane Orientation Function and Azimuth Angle of Uniaxially Drawn Polyethylene Composite Film , 2011 .

[35]  Saulius Juodkazis,et al.  Application of Bessel Beams for Microfabrication of Dielectrics by Femtosecond Laser , 2001 .