On the feasibility of future colliders: report of the Snowmass'21 Implementation Task Force

Colliders are essential research tools for particle physics. Numerous future collider proposal were discussed in the course of the US high energy physics community strategic planning exercise Snowmass'21. The Implementation Task Force (ITF) has been established to evaluate the proposed future accelerator projects for performance, technology readiness, schedule, cost, and environmental impact. Corresponding metrics has been developed for uniform comparison of the proposals ranging from Higgs/EW factories to multi-TeV lepton, hadron and ep collider facilities, based on traditional and advanced acceleration technologies. This article describes the metrics and approaches, and presents evaluations of future colliders performed by the ITF.

[1]  Batavia,et al.  Report of the 2021 U.S. Community Study on the Future of Particle Physics (Snowmass 2021) Summary Chapter , 2023, 2301.06581.

[2]  D. Kramer Further delays at ITER are certain, but their duration isn’t clear , 2022, Physics Today.

[3]  Lian-tao Wang,et al.  Physics at Future Colliders: the Interplay Between Energy and Luminosity , 2022, 2205.00031.

[4]  D. Schulte,et al.  The CLIC project , 2022, 2203.09186.

[5]  Yifang Wang,et al.  Study Overview for Super Proton-Proton Collider , 2022, 2203.07987.

[6]  W. Riegler,et al.  Future Circular Hadron Collider FCC-hh: Overview and Status , 2022, 2203.07804.

[7]  J. Brau,et al.  Strategy for Understanding the Higgs Physics: The Cool Copper Collider , 2022, 2203.07646.

[8]  M. Casarsa,et al.  A Muon Collider Facility for Physics Discovery , 2022, 2203.08033.

[9]  A. Blondel,et al.  Future Circular Lepton Collider FCC-ee: Overview and Status , 2022, 2203.08310.

[10]  S. Jindariani,et al.  Higgs-Energy LEptoN (HELEN) Collider based on advanced superconducting radio frequency technology , 2022, 2203.08211.

[11]  G. Apollinari,et al.  Future Collider Options for the US , 2022, 2203.08088.

[12]  C. Group Snowmass2021 White Paper AF3-CEPC , 2022, 2203.09451.

[13]  J. Rosenzweig,et al.  Continuous and Coordinated Efforts of Structure Wakefield Acceleration (SWFA) Development for an Energy Frontier Machine , 2022, 2203.08275.

[14]  Zhen Liu,et al.  WIMP Dark Matter at High Energy Muon Colliders $-$A White Paper for Snowmass 2021 , 2022, 2203.07351.

[15]  M. Chamizo-Llatas,et al.  CERC -- Circular $e^+e^-$ Collider using Energy-Recovery Linac , 2022, 2203.07358.

[16]  M. Chamizo-Llatas,et al.  The ReLiC: Recycling Linear $e^+e^-$ Collider , 2022, 2203.06476.

[17]  Fermilab,et al.  European Strategy for Particle Physics -- Accelerator R&D Roadmap , 2022, 2201.07895.

[18]  V. Shiltsev,et al.  Record High Ramping Rates in HTS Based Superconducting Accelerator Magnet , 2021, IEEE Transactions on Applied Superconductivity.

[19]  M. Oriunno,et al.  C$^3$: A"Cool"Route to the Higgs Boson and Beyond , 2021, 2110.15800.

[20]  D. Buttazzo,et al.  Closing the window on WIMP Dark Matter , 2021, The European Physical Journal C.

[21]  V. Telnov A high-luminosity superconducting twin e+e- linear collider with energy recovery , 2021, Journal of Instrumentation.

[22]  C. Tully,et al.  The muon Smasher’s guide , 2021, Reports on progress in physics. Physical Society.

[23]  A. Strumia,et al.  Minimal Dark Matter bound states at future colliders , 2021, Journal of High Energy Physics.

[24]  F. Meloni,et al.  Hunting wino and higgsino dark matter at the muon collider with disappearing tracks , 2021, Journal of High Energy Physics.

[25]  D. Lucchesi,et al.  Muon colliders to expand frontiers of particle physics , 2021, Nature Physics.

[26]  S. M. Wiggins,et al.  EuPRAXIA Conceptual Design Report , 2020, The European Physical Journal Special Topics.

[27]  T. Han,et al.  WIMPs at high energy muon colliders , 2020, 2009.11287.

[28]  V. Shiltsev Particle beams behind physics discoveries , 2020, Physics Today.

[29]  Vladimir Shiltsev,et al.  Modern and future colliders , 2020, Reviews of Modern Physics.

[30]  I. A. Iakovlev,et al.  Multiscale structural complexity of natural patterns , 2020, Proceedings of the National Academy of Sciences.

[31]  J. R. Greis,et al.  Demonstration of cooling by the Muon Ionization Cooling Experiment , 2020, Nature.

[32]  S. Russenschuck,et al.  The Large Hadron-Electron Collider at the HL-LHC , 2020, 2007.14491.

[33]  M. Chamizo-Llatas,et al.  High-energy high-luminosity e+e− collider using energy-recovery linacs , 2019, Physics Letters B.

[34]  Nicola De Filippis,et al.  FCC-hh: The Hadron Collider , 2019, The European Physical Journal Special Topics.

[35]  J. T. Childers,et al.  FCC-ee: The Lepton Collider , 2019, The European Physical Journal Special Topics.

[36]  F. Simon Scanning Strategies at the Top Threshold at ILC , 2019, 1902.07246.

[37]  P. N. Burrows,et al.  The Compact Linear Collider (CLIC) – Project Implementation Plan , 2018, 1903.08655.

[38]  Nicola De Filippis,et al.  Future Circular Collider : Vol. 1 Physics opportunities , 2018 .

[39]  The Cepc Study Group CEPC Conceptual Design Report: Volume 2 - Physics&Detector , 2018, 1811.10545.

[40]  G. Loew International Linear Collider Technical Review Committee Report 1995 , 2018 .

[41]  Mihály Héder From NASA to EU: the evolution of the TRL scale in Public Sector Innovation , 2017 .

[42]  M. Durante,et al.  Considerations on a Cost Model for High-Field Dipole Arc Magnets for FCC , 2017, IEEE Transactions on Applied Superconductivity.

[43]  E. Esarey,et al.  Laser-plasma-based linear collider using hollow plasma channels , 2016 .

[44]  S. Kuroda ATF2 for Final Focus Test Beam for Future Linear Colliders , 2016 .

[45]  G. Sabbi,et al.  Design Concept for a Future Super Proton-Proton Collider , 2015, Frontiers in Physics.

[46]  L. Rossi Manufacturing and Testing of Accelerator Superconducting Magnets , 2015, 1501.07164.

[47]  JiJi Fan,et al.  Possible futures of electroweak precision: ILC, FCC-ee, and CEPC , 2014, Journal of High Energy Physics.

[48]  V. Shiltsev,et al.  A phenomenological cost model for high energy particle accelerators , 2014, 1404.4097.

[49]  S. Michizono,et al.  THE INTERNATIONAL LINEAR COLLIDER , 2013, 1304.2586.

[50]  A. Blondel,et al.  A High Luminosity e+e- Collider to study the Higgs Boson , 2012, 1208.0504.

[51]  P. Lebrun,et al.  ASSESSING RISK IN COSTING HIGH-ENERGY ACCELERATORS:FROM EXISTING PROJECTS TO THE FUTURE LINEAR COLLIDER , 2012, 1207.4994.

[52]  V. Shiltsev On Phenomenology of Complex Scientific Systems , 2011, 1102.4350.

[53]  K. Desch,et al.  The Linear Collider Physics Case: International Response to the Technology Independent Questions Posed by the International Technology Recommendation Panel , 2004, hep-ph/0411159.

[54]  G. Loew,et al.  Report from the International Linear Collider Technical Review Committee , 2003, Proceedings of the 2003 Particle Accelerator Conference.

[55]  S. Lloyd,et al.  Measures of complexity: a nonexhaustive list , 2001 .

[56]  J. Bromage,et al.  Linear collider based on laser-plasma accelerators , 2022 .

[57]  Yifang Wang,et al.  Snowmass 2021 White Paper AF4-SPPC , 2022 .

[58]  Medhat H. M. Elsayed,et al.  CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector , 2015 .

[59]  JiJi Fan,et al.  Possible futures of electroweak precision : ILC , FCC , 2015 .

[60]  W. Gai,et al.  ARGONNE FLEXIBLE LINEAR COLLIDER , 2013 .

[61]  P. Tenenbaum The Final focus test beam , 1995 .

[62]  A. Shiryayev On Tables of Random Numbers , 1993 .