Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells

[1]  A. Thomson,et al.  Tolerogenic plasmacytoid DC , 2010, European journal of immunology.

[2]  J. Fechner,et al.  An Interaction between Kynurenine and the Aryl Hydrocarbon Receptor Can Generate Regulatory T Cells , 2010, The Journal of Immunology.

[3]  W. Reith,et al.  MHC class II–restricted antigen presentation by plasmacytoid dendritic cells inhibits T cell–mediated autoimmunity , 2010, The Journal of experimental medicine.

[4]  S. Bicciato,et al.  Metabotropic glutamate receptor-4 modulates adaptive immunity and restrains neuroinflammation , 2010, Nature Medicine.

[5]  U. Grohmann,et al.  Control of immune response by amino acid metabolism , 2010, Immunological reviews.

[6]  M. Belosevic,et al.  Identification of key cytosolic kinases containing evolutionarily conserved kinase tyrosine-based inhibitory motifs (KTIMs). , 2010, Developmental and comparative immunology.

[7]  B. Baban,et al.  Dendritic Cells, Indoleamine 2,3 Dioxygenase and Acquired Immune Privilege , 2010, International reviews of immunology.

[8]  M. Colonna,et al.  Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance , 2010, Immunological reviews.

[9]  M. Gilliet,et al.  Plasmacytoid dendritic cells: key players in the initiation and regulation of immune responses , 2010, Annals of the New York Academy of Sciences.

[10]  U. Grohmann,et al.  IDO Mediates TLR9-Driven Protection from Experimental Autoimmune Diabetes1 , 2009, The Journal of Immunology.

[11]  Chiara Romualdi,et al.  A-MADMAN: Annotation-based microarray data meta-analysis tool , 2009, BMC Bioinformatics.

[12]  Constance J Jeffery,et al.  Moonlighting proteins--an update. , 2009, Molecular bioSystems.

[13]  H. Ball,et al.  Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. , 2009, The international journal of biochemistry & cell biology.

[14]  U. Grohmann,et al.  SOCS3 drives proteasomal degradation of indoleamine 2,3-dioxygenase (IDO) and antagonizes IDO-dependent tolerogenesis , 2008, Proceedings of the National Academy of Sciences.

[15]  L. Boon,et al.  Cutting Edge: Autocrine TGF-β Sustains Default Tolerogenesis by IDO-Competent Dendritic Cells1 , 2008, The Journal of Immunology.

[16]  É. Vivier,et al.  Immunoreceptor tyrosine‐based inhibition motifs: a quest in the past and future , 2008, Immunological reviews.

[17]  Xuetao Cao,et al.  Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1 , 2008, Nature Immunology.

[18]  U. Grohmann,et al.  Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease , 2008, Nature.

[19]  U. Grohmann,et al.  IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-κB activation , 2007, Nature Reviews Immunology.

[20]  G. Prendergast,et al.  Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. , 2007, Cancer research.

[21]  L. Boon,et al.  Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy , 2007, Nature Medicine.

[22]  P. Puccetti On watching the watchers: IDO and type I/II IFN , 2007, European journal of immunology.

[23]  J. F. Burrows,et al.  CD33 responses are blocked by SOCS3 through accelerated proteasomal-mediated turnover. , 2007, Blood.

[24]  Sarah J. Thackray,et al.  Molecular insights into substrate recognition and catalysis by tryptophan 2,3-dioxygenase , 2007, Proceedings of the National Academy of Sciences.

[25]  U. Grohmann,et al.  The Combined Effects of Tryptophan Starvation and Tryptophan Catabolites Down-Regulate T Cell Receptor ζ-Chain and Induce a Regulatory Phenotype in Naive T Cells1 , 2006, The Journal of Immunology.

[26]  U. Grohmann,et al.  IL-23 neutralization protects mice from Gram-negative endotoxic shock. , 2006, Cytokine.

[27]  Katia Perruccio,et al.  Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. , 2006, Blood.

[28]  S. Akira,et al.  IκB kinase-α is critical for interferon-α production induced by Toll-like receptors 7 and 9 , 2006, Nature.

[29]  J. F. Burrows,et al.  SOCS3 Targets Siglec 7 for Proteasomal Degradation and Blocks Siglec 7-mediated Responses* , 2006, Journal of Biological Chemistry.

[30]  Junguk Park,et al.  Decoding protein-protein interactions through combinatorial chemistry: sequence specificity of SHP-1, SHP-2, and SHIP SH2 domains. , 2005, Biochemistry.

[31]  U. Grohmann,et al.  Cutting Edge: Silencing Suppressor of Cytokine Signaling 3 Expression in Dendritic Cells Turns CD28-Ig from Immune Adjuvant to Suppressant1 , 2005, The Journal of Immunology.

[32]  G. Prendergast,et al.  Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy , 2005, Nature Medicine.

[33]  Ciriana Orabona,et al.  CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86 , 2004, Nature Immunology.

[34]  D. Munn,et al.  Ido expression by dendritic cells: tolerance and tryptophan catabolism , 2004, Nature Reviews Immunology.

[35]  U. Grohmann,et al.  Modulation of tryptophan catabolism by regulatory T cells , 2003, Nature Immunology.

[36]  U. Grohmann,et al.  Functional Plasticity of Dendritic Cell Subsets as Mediated by CD40 Versus B7 Activation 1 , 2003, The Journal of Immunology.

[37]  U. Grohmann,et al.  A Defect in Tryptophan Catabolism Impairs Tolerance in Nonobese Diabetic Mice , 2003, The Journal of experimental medicine.

[38]  B. Neel,et al.  The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. , 2003, Trends in biochemical sciences.

[39]  U. Grohmann,et al.  Tolerance, DCs and tryptophan: much ado about IDO. , 2003, Trends in immunology.

[40]  U. Grohmann,et al.  CTLA-4–Ig regulates tryptophan catabolism in vivo , 2002, Nature Immunology.

[41]  J. Renauld,et al.  IL-23 and IL-12 Have Overlapping, but Distinct, Effects on Murine Dendritic Cells1 , 2002, The Journal of Immunology.

[42]  P. Leibson,et al.  ITAMs versus ITIMs: striking a balance during cell regulation. , 2002, The Journal of clinical investigation.

[43]  L. Lanier,et al.  Immune inhibitory receptors. , 2000, Science.

[44]  D. Munn,et al.  Prevention of allogeneic fetal rejection by tryptophan catabolism. , 1998, Science.

[45]  M. Saraste,et al.  Insights into Src kinase functions: structural comparisons. , 1998, Trends in biochemical sciences.

[46]  Milton W. Taylor,et al.  Relationship between interferon‐γ, indoleamine 2,3‐dioxygenase, and tryptophan catabolism , 1991, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[47]  M. Flajnik,et al.  Origin and evolution of the adaptive immune system: genetic events and selective pressures , 2010, Nature Reviews Genetics.

[48]  B. Fazekas de St. Groth,et al.  The evolution of self-tolerance: a new cell arises to meet the challenge of self-reactivity. , 1998, Immunology today.