A review on quantum search algorithms

The use of superposition of states in quantum computation, known as quantum parallelism, has significant advantage in terms of speed over the classical computation. It is evident from the early invented quantum algorithms such as Deutsch’s algorithm, Deutsch–Jozsa algorithm and its variation as Bernstein–Vazirani algorithm, Simon algorithm, Shor’s algorithms, etc. Quantum parallelism also significantly speeds up the database search algorithm, which is important in computer science because it comes as a subroutine in many important algorithms. Quantum database search of Grover achieves the task of finding the target element in an unsorted database in a time quadratically faster than the classical computer. We review Grover’s quantum search algorithms for a singe and multiple target elements in a database. The partial search algorithm of Grover and Radhakrishnan and its optimization by Korepin called GRK algorithm are also discussed.

[1]  Michele Mosca,et al.  On quantum algorithms , 1998 .

[2]  Ying Xu,et al.  QUANTUM SEARCH ALGORITHMS , 2009 .

[3]  Vladimir E. Korepin,et al.  Group Theoretical Formulation of Quantum Partial Search Algorithm , 2006, ArXiv.

[4]  T. S. Mahesh Quantum information processing by NMR , 2015 .

[5]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[6]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[7]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[8]  Ying Xu,et al.  HIERARCHICAL QUANTUM SEARCH , 2005 .

[9]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[10]  J. Rogers Chaos , 1876 .

[11]  E. Farhi,et al.  Quantum Mechanical Square Root Speedup in a Structured Search Problem , 1997, quant-ph/9711035.

[12]  Samuel L. Braunstein,et al.  Sure Success Partial Search , 2007, Quantum Inf. Process..

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Christof Zalka GROVER'S QUANTUM SEARCHING ALGORITHM IS OPTIMAL , 1997, quant-ph/9711070.

[15]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[16]  Anirban Pathak,et al.  Elements of Quantum Computation and Quantum Communication , 2013 .

[17]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[18]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[19]  Stan Gudder,et al.  Mathematical Theory of Duality Quantum Computers , 2007, Quantum Inf. Process..

[20]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[21]  Vladimir E. Korepin,et al.  Optimization of Partial Search , 2005, ArXiv.

[22]  Lov K. Grover Quantum Search on Structured Problems , 1999 .

[23]  G. F. P. Fernandes Parallel algorithms and architectures for LDPC Decoding , 2010 .

[24]  F. M. Toyama,et al.  Quantum search with certainty based on modified Grover algorithms: optimum choice of parameters , 2013, Quantum Inf. Process..

[25]  N. Cerf,et al.  Quantum search by local adiabatic evolution , 2001, quant-ph/0107015.

[26]  G. Long Grover algorithm with zero theoretical failure rate , 2001, quant-ph/0106071.

[27]  Byung-Soo Choi,et al.  Quantum Partial Search of a Database with Several Target Items , 2007, Quantum Inf. Process..

[28]  Lov K. Grover Quantum Computers Can Search Rapidly by Using Almost Any Transformation , 1998 .

[29]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[30]  Vladimir E. Korepin,et al.  Quest for Fast Partial Search Algorithm , 2006, Quantum Inf. Process..

[31]  Ying Xu,et al.  Binary quantum search , 2007, SPIE Defense + Commercial Sensing.