Continuum Definitions for Stress in Atomistic Simulation

This report is a collection of documents written by the group members of the Engineering Sciences Research Foundation (ESRF), Laboratory Directed Research and Development (LDRD) project titled “A Robust, Coupled Approach to Atomist,ic-Continuum Simulation”. An essential requirement of this project is to develop definitions for continuum quantities that can be evaluated locally within an atomistic region. We are developing physical measures of stress, deformation and temperature that are calculable in an atomist,ic simulation and have well-defined meanings when evaluated in the continuum limit. During the course of FY02, we reviewed many articles presenting the use of definitions of stress in atomistic simulation. The key articles were identified and summarized via internal documents.

[1]  W. H. Weinberg,et al.  Theoretical study of the energetics, strain fields, and semicoherent interface structures in layer-by-layer semiconductor heteroepitaxy , 1999 .

[2]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[3]  T. Belytschko,et al.  Element-free galerkin methods for static and dynamic fracture , 1995 .

[4]  Ted Belytschko,et al.  Multiple scale meshfree methods for damage fracture and localization , 1999 .

[5]  Theoretical examination of stress fields in Pb(Zr0.5Ti0.5)O3 , 1997, cond-mat/9704201.

[6]  Wm. G. Hoover Isomorphism linking smooth particles and embedded atoms , 1998 .

[7]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[8]  K. Watanabe,et al.  Calculation of internal stresses around Cu precipitates in the bcc Fe matrix by atomic simulation , 1999 .

[9]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[10]  Sidney Yip,et al.  Atomic‐level stress in an inhomogeneous system , 1991 .

[11]  R. Smith,et al.  Void formation during film growth: A molecular dynamics simulation study , 1996 .

[12]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[13]  Mark F. Horstemeyer,et al.  Atomistic Finite Deformation Simulations: A Discussion on Length Scale Effects in Relation to Mechanical Stresses , 1999 .

[14]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[15]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Surface Tension , 1949 .

[16]  H. Fischmeister,et al.  Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model , 1991 .

[17]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[18]  Ted Belytschko,et al.  Advances in multiple scale kernel particle methods , 1996 .

[19]  Ted Belytschko,et al.  EFG approximation with discontinuous derivatives , 1998 .

[20]  D. H. Tsai The virial theorem and stress calculation in molecular dynamics , 1979 .

[21]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[22]  Robert J. Swenson,et al.  Comments on virial theorems for bounded systems , 1983 .

[23]  The Nature of Crack Tip Fields in Atomic Scale Models of Aluminum , 1990 .

[24]  William G. Hoover,et al.  Nonequilibrium Molecular Dynamics , 1983 .

[25]  V. Vítek,et al.  Atomic Level Stresses in Solids and Liquids , 1987 .

[26]  Su Hao,et al.  Computer implementation of damage models by finite element and meshfree methods , 2000 .

[27]  Ted Belytschko,et al.  Element-free Galerkin method for wave propagation and dynamic fracture , 1995 .

[28]  Albert-László Barabási,et al.  Molecular-dynamics investigation of the surface stress distribution in a Ge/Si quantum dot superlattice , 1999 .

[29]  Mark A Fleming,et al.  Smoothing and accelerated computations in the element free Galerkin method , 1996 .

[30]  Ju Li,et al.  Mechanistic aspects and atomic-level consequences of elastic instabilities in homogeneous crystals , 2001 .

[31]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[32]  A. Madhukar,et al.  Simulations of atomic level stresses in systems of buried Ge /Si islands. , 2001, Physical review letters.

[33]  Jiun-Shyan Chen,et al.  Non‐linear version of stabilized conforming nodal integration for Galerkin mesh‐free methods , 2002 .

[34]  Charles B. Kafadar,et al.  Micropolar media—I the classical theory , 1971 .

[35]  T. Belytschko,et al.  THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .

[36]  R. A. Uras,et al.  Enrichment of the Finite Element Method With the Reproducing Kernel Particle Method , 1995 .

[37]  J. Henderson,et al.  Statistical mechanics of inhomogeneous fluids , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[38]  Kun Huang On the atomic theory of elasticity , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[39]  T. Belytschko,et al.  Nodal integration of the element-free Galerkin method , 1996 .

[40]  Wing Kam Liu,et al.  Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures , 1996 .

[41]  Martin,et al.  Quantum-mechanical theory of stress and force. , 1985, Physical review. B, Condensed matter.

[42]  Gregory J. Wagner,et al.  Application of essential boundary conditions in mesh-free methods: a corrected collocation method , 2000 .

[43]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[44]  Wing Kam Liu,et al.  Mesh-free simulations of shear banding in large deformation , 2000 .

[45]  Li,et al.  Moving least-square reproducing kernel methods (I) Methodology and convergence , 1997 .

[46]  Ted Belytschko,et al.  THE ELEMENT FREE GALERKIN METHOD FOR DYNAMIC PROPAGATION OF ARBITRARY 3-D CRACKS , 1999 .

[47]  C. M. Stone,et al.  A computational method for quasi-static fracture , 1998 .

[48]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[49]  Wing Kam Liu,et al.  Implementation of boundary conditions for meshless methods , 1998 .

[50]  O. C. Zienkiewicz,et al.  A new cloud-based hp finite element method , 1998 .

[51]  Ted Belytschko,et al.  Numerical integration of the Galerkin weak form in meshfree methods , 1999 .

[52]  White,et al.  Split shock waves from molecular dynamics. , 1991, Physical review letters.

[53]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[54]  Lord Rayleigh,et al.  XLII.On the momentum and pressure of gaseous vibrations, and on the connexion with the virial theorem , 1905 .

[55]  Wing Kam Liu,et al.  Numerical simulations of strain localization in inelastic solids using mesh‐free methods , 2000 .

[56]  Mark A Fleming,et al.  Continuous meshless approximations for nonconvex bodies by diffraction and transparency , 1996 .

[57]  C. G. Hoover,et al.  Temperature maxima in stable two-dimensional shock waves , 1997 .

[58]  T. J. Delph,et al.  Stress calculation in atomistic simulations of perfect and imperfect solids , 2001 .

[59]  Ted Belytschko,et al.  Multi-scale methods , 2000 .

[60]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[61]  Wing Kam Liu,et al.  Reproducing kernel particle methods for structural dynamics , 1995 .

[62]  S. Jun,et al.  Multiresolution reproducing kernel particle methods , 1997 .

[63]  White,et al.  Molecular-dynamics simulations of void collapse in shocked model-molecular solids. , 1994, Physical review. B, Condensed matter.

[64]  E. O’Reilly,et al.  Calculation of strain relaxation in strained-layer structures: comparison of atomistic and continuum methods , 1994 .

[65]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[66]  Baus,et al.  Stress-strain relations in nonuniform equilibrium fluids. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[67]  R. A. Uras,et al.  Generalized multiple scale reproducing kernel particle methods , 1996 .

[68]  S. Li,et al.  Synchronized reproducing kernel interpolant via multiple wavelet expansion , 1998 .

[69]  T. Belytschko,et al.  Element-free Galerkin method: Convergence of the continuous and discontinuous shape functions , 1997 .

[70]  S. Atluri,et al.  A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach , 1998 .

[71]  T. Belytschko,et al.  DYNAMIC FRACTURE USING ELEMENT-FREE GALERKIN METHODS , 1996 .

[72]  Ted Belytschko,et al.  Explicit Reproducing Kernel Particle Methods for large deformation problems , 1998 .

[73]  Ted Belytschko,et al.  A coupled finite element-element-free Galerkin method , 1995 .

[74]  Wing Kam Liu,et al.  Wavelet and multiple scale reproducing kernel methods , 1995 .

[75]  Wing Kam Liu,et al.  Multiple‐scale reproducing kernel particle methods for large deformation problems , 1998 .

[76]  Brian Moran,et al.  Treatment of material discontinuity in the Element-Free Galerkin method , 1996 .

[77]  T. Belytschko,et al.  Fracture and crack growth by element free Galerkin methods , 1994 .

[78]  R. Clausius,et al.  XVI. On a mechanical theorem applicable to heat , 1870 .

[79]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .