Dynamical Quantum Phase Transitions in Spin Chains with Long-Range Interactions: Merging Different Concepts of Nonequilibrium Criticality.

We theoretically study the dynamics of a transverse-field Ising chain with power-law decaying interactions characterized by an exponent α, which can be experimentally realized in ion traps. We focus on two classes of emergent dynamical critical phenomena following a quantum quench from a ferromagnetic initial state: The first one manifests in the time-averaged order parameter, which vanishes at a critical transverse field. We argue that such a transition occurs only for long-range interactions α≤2. The second class corresponds to the emergence of time-periodic singularities in the return probability to the ground-state manifold which is obtained for all values of α and agrees with the order parameter transition for α≤2. We characterize how the two classes of nonequilibrium criticality correspond to each other and give a physical interpretation based on the symmetry of the time-evolved quantum states.

[1]  Jad C. Halimeh,et al.  Probing the anomalous dynamical phase in long-range quantum spin chains through Fisher-zero lines. , 2017, Physical review. E.

[2]  M. Heyl,et al.  Dynamical quantum phase transitions in systems with continuous symmetry breaking , 2017, 1709.00421.

[3]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.

[4]  Immanuel Bloch,et al.  Probing Slow Relaxation and Many-Body Localization in Two-Dimensional Quasiperiodic Systems , 2017, 1704.03063.

[5]  Jad C. Halimeh,et al.  Anomalous dynamical phase in quantum spin chains with long-range interactions , 2017, 1703.09195.

[6]  B. Lanyon,et al.  Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System. , 2016, Physical review letters.

[7]  Jad C. Halimeh,et al.  Dynamical phase diagram of quantum spin chains with long-range interactions , 2016, 1610.02019.

[8]  Jad C. Halimeh,et al.  Prethermalization and persistent order in the absence of a thermal phase transition , 2016, 1610.01468.

[9]  M. Heyl Quenching a quantum critical state by the order parameter: Dynamical quantum phase transitions and quantum speed limits , 2016, 1608.06659.

[10]  M. Heyl,et al.  Observation of a dynamical topological phase transition , 2016, 1608.05616.

[11]  Aaron C. E. Lee,et al.  Observation of prethermalization in long-range interacting spin chains , 2016, Science Advances.

[12]  Immanuel Bloch,et al.  Periodically driving a many-body localized quantum system , 2016, Nature Physics.

[13]  M. Fabrizio,et al.  Dynamical phase transitions and Loschmidt echo in the infinite-range XY model , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  T. Monz,et al.  Real-time dynamics of lattice gauge theories with a few-qubit quantum computer , 2016, Nature.

[15]  A. Balatsky,et al.  Dynamical Quantum Phase Transitions: Role of Topological Nodes in Wave Function Overlaps. , 2016, Physical review letters.

[16]  Jae-yoon Choi,et al.  Exploring the many-body localization transition in two dimensions , 2016, Science.

[17]  S. Kehrein,et al.  Quantum quench dynamics in the transverse field Ising model at nonzero temperatures , 2015, 1510.08728.

[18]  M. Schreiber,et al.  Coupling Identical one-dimensional Many-Body Localized Systems. , 2015, Physical review letters.

[19]  Aaron C. E. Lee,et al.  Many-body localization in a quantum simulator with programmable random disorder , 2015, Nature Physics.

[20]  A. Dutta,et al.  Quenches and dynamical phase transitions in a non-integrable quantum Ising model , 2015, 1506.00477.

[21]  M. Schmitt,et al.  Dynamical quantum phase transitions in the Kitaev honeycomb model , 2015, 1505.03401.

[22]  M. Heyl Scaling and Universality at Dynamical Quantum Phase Transitions. , 2015, Physical review letters.

[23]  M. Heyl,et al.  Dynamical topological order parameters far from equilibrium , 2015, 1504.05599.

[24]  M. Schreiber,et al.  Observation of many-body localization of interacting fermions in a quasirandom optical lattice , 2015, Science.

[25]  Szabolcs Vajna,et al.  Topological classification of dynamical phase transitions , 2014, 1409.7019.

[26]  E. Demler,et al.  Exploring dynamical phase transitions and prethermalization with quantum noise of excitations , 2014, 1409.1883.

[27]  Ivan Oseledets,et al.  Unifying time evolution and optimization with matrix product states , 2014, 1408.5056.

[28]  P. Werner,et al.  First-order dynamical phase transitions. , 2014, Physical review letters.

[29]  E. Demler,et al.  Far-from-equilibrium spin transport in Heisenberg quantum magnets. , 2014, Physical review letters.

[30]  C. Karrasch,et al.  Dynamical quantum phase transitions in the axial next-nearest-neighbor Ising chain , 2014, 1407.4036.

[31]  M. Heyl Dynamical quantum phase transitions in systems with broken-symmetry phases. , 2014, Physical review letters.

[32]  B. Lanyon,et al.  Quasiparticle engineering and entanglement propagation in a quantum many-body system , 2014, Nature.

[33]  Aaron C. E. Lee,et al.  Non-local propagation of correlations in quantum systems with long-range interactions , 2014, Nature.

[34]  Szabolcs Vajna,et al.  Disentangling dynamical phase transitions from equilibrium phase transitions , 2014, 1401.2865.

[35]  J. Sirker,et al.  Dynamical quantum phase transitions and the Loschmidt echo: A transfer matrix approach , 2013, 1312.4165.

[36]  M. Lukin,et al.  Probing real-space and time-resolved correlation functions with many-body Ramsey interferometry. , 2013, Physical review letters.

[37]  J. Schmiedmayer,et al.  Local emergence of thermal correlations in an isolated quantum many-body system , 2013, Nature Physics.

[38]  G. Uhrig,et al.  Dynamical transition in interaction quenches of the one-dimensional Hubbard model , 2013, 1302.4109.

[39]  D. Schuricht,et al.  Dynamical phase transitions after quenches in nonintegrable models , 2013, 1302.3893.

[40]  G. Biroli,et al.  Quantum quenches, dynamical transitions, and off-equilibrium quantum criticality , 2012, 1211.2572.

[41]  A. Gambassi,et al.  Large deviations and universality in quantum quenches. , 2012, Physical review letters.

[42]  F. Fressin,et al.  Emergence and Frustration of Magnetism with Variable-Range Interactions in a Quantum Simulator , 2012, Science.

[43]  A. Mitra Time evolution and dynamical phase transitions at a critical time in a system of one-dimensional bosons after a quantum quench. , 2012, Physical review letters.

[44]  M. Heyl,et al.  Dynamical quantum phase transitions in the transverse-field Ising model. , 2012, Physical review letters.

[45]  Michael J. Biercuk,et al.  Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins , 2012, Nature.

[46]  I. Mazets,et al.  Relaxation and Prethermalization in an Isolated Quantum System , 2011, Science.

[47]  B. Lanyon,et al.  Universal Digital Quantum Simulation with Trapped Ions , 2011, Science.

[48]  G. Biroli,et al.  Dynamical transitions and quantum quenches in mean-field models , 2011, 1108.5068.

[49]  A. Gambassi,et al.  Statistics of the Work in Quantum Quenches, Universality and the Critical Casimir Effect , 2011, 1106.2671.

[50]  P. Calabrese,et al.  Quantum quench in the transverse field Ising chain: I. Time evolution of order parameter correlators , 2011, Physical review letters.

[51]  F. Verstraete,et al.  Time-dependent variational principle for quantum lattices. , 2011, Physical review letters.

[52]  F. A. Wolf,et al.  Generalized Gibbs ensemble prediction of prethermalization plateaus and their relation to nonthermal steady states in integrable systems , 2011, 1102.2117.

[53]  P. Calabrese,et al.  Quantum quenches as classical critical films , 2010, 1012.5294.

[54]  Bruno Sciolla,et al.  Quantum quenches and off-equilibrium dynamical transition in the infinite-dimensional Bose-Hubbard model. , 2010, Physical review letters.

[55]  Michele Fabrizio,et al.  Time-dependent mean field theory for quench dynamics in correlated electron systems. , 2010, Physical review letters.

[56]  Andrea Micheli,et al.  Dynamical phase transitions and instabilities in open atomic many-body systems. , 2010, Physical review letters.

[57]  J. P. Garrahan,et al.  Thermodynamics of quantum jump trajectories. , 2009, Physical review letters.

[58]  Martin Eckstein,et al.  Interaction quench in the Hubbard model: Relaxation of the spectral function and the optical conductivity , 2009, 0910.5674.

[59]  Martin Eckstein,et al.  Thermalization after an interaction quench in the Hubbard model. , 2009, Physical review letters.

[60]  A. Green,et al.  Dynamics after a sweep through a quantum critical point. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  E. Demler,et al.  Relaxation of antiferromagnetic order in spin-1/2 chains following a quantum quench. , 2008, Physical review letters.

[62]  Germany,et al.  Quantum states and phases in driven open quantum systems with cold atoms , 2008, 0803.1482.

[63]  J. Schmiedmayer,et al.  Non-equilibrium coherence dynamics in one-dimensional Bose gases. , 2007, Nature.

[64]  E. Yuzbashyan,et al.  Relaxation and persistent oscillations of the order parameter in fermionic condensates. , 2006, Physical review letters.

[65]  S. Ruffo,et al.  Breaking of ergodicity and long relaxation times in systems with long-range interactions. , 2005, Physical review letters.

[66]  J. Bhattacharjee,et al.  Phase transitions in the quantum Ising and rotor models with a long-range interaction , 2001 .

[67]  S. Ruffo,et al.  Inequivalence of ensembles in a system with long-range interactions. , 2001, Physical review letters.

[68]  H. Blote,et al.  Classical critical behavior of spin models with long-range interactions , 1997, cond-mat/9704016.

[69]  Michael E. Fisher,et al.  Critical Exponents for Long-Range Interactions , 1972 .

[70]  Freeman J. Dyson,et al.  Existence of a phase-transition in a one-dimensional Ising ferromagnet , 1969 .

[71]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[72]  Michael J. Biercuk,et al.  Engineered 2D Ising interactions on a trapped-ion quantum simulator with hundreds of spins , 2012 .

[73]  L. Sehgal,et al.  Γ and B , 2004 .