Freiburg RNA tools: a central online resource for RNA-focused research and teaching

Abstract The Freiburg RNA tools webserver is a well established online resource for RNA-focused research. It provides a unified user interface and comprehensive result visualization for efficient command line tools. The webserver includes RNA-RNA interaction prediction (IntaRNA, CopraRNA, metaMIR), sRNA homology search (GLASSgo), sequence-structure alignments (LocARNA, MARNA, CARNA, ExpaRNA), CRISPR repeat classification (CRISPRmap), sequence design (antaRNA, INFO-RNA, SECISDesign), structure aberration evaluation of point mutations (RaSE), and RNA/protein-family models visualization (CMV), and other methods. Open education resources offer interactive visualizations of RNA structure and RNA-RNA interaction prediction as well as basic and advanced sequence alignment algorithms. The services are freely available at http://rna.informatik.uni-freiburg.de.

[1]  Alessandro Dal Palù,et al.  A Propagator for Maximum Weight String Alignment with Arbitrary Pairwise Dependencies , 2010, CP.

[2]  Yann Ponty,et al.  Design of RNAs: comparing programs for inverse RNA folding , 2017, Briefings Bioinform..

[3]  Stephan H. Bernhart,et al.  RNA Accessibility in cubic time , 2011, Algorithms for Molecular Biology.

[4]  Amrita Pati,et al.  Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs , 2016, Nature Communications.

[5]  Rolf Backofen,et al.  Interactive implementations of thermodynamics-based RNA structure and RNA–RNA interaction prediction approaches for example-driven teaching , 2018, PLoS computational biology.

[6]  Rolf Backofen,et al.  CRISPRstrand: predicting repeat orientations to determine the crRNA-encoding strand at CRISPR loci , 2014, Bioinform..

[7]  Matthias E. Futschik,et al.  Acclimation of Oxygenic Photosynthesis to Iron Starvation Is Controlled by the sRNA IsaR1 , 2017, Current Biology.

[8]  D. Turner,et al.  Predicting oligonucleotide affinity to nucleic acid targets. , 1999, RNA.

[9]  Rolf Backofen,et al.  Inferring Noncoding RNA Families and Classes by Means of Genome-Scale Structure-Based Clustering , 2007, PLoS Comput. Biol..

[10]  Jerrold R. Griggs,et al.  Algorithms for Loop Matchings , 1978 .

[11]  Rolf Backofen,et al.  IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions , 2008, Bioinform..

[12]  Rolf Backofen,et al.  MoDPepInt: an interactive web server for prediction of modular domain–peptide interactions , 2014, Bioinform..

[13]  M. Gelfand,et al.  Comparative analysis of CRISPR cassettes from the human gut metagenomic contigs , 2014, BMC Genomics.

[14]  Florian Eggenhofer,et al.  RNAlien – Unsupervised RNA family model construction , 2016, Nucleic acids research.

[15]  R. Backofen,et al.  Semi-Supervised Prediction of SH2-Peptide Interactions from Imbalanced High-Throughput Data , 2013, PloS one.

[16]  Rolf Backofen,et al.  CPSP-tools – Exact and complete algorithms for high-throughput 3D lattice protein studies , 2008, BMC Bioinformatics.

[17]  Rolf Backofen,et al.  Cluster based prediction of PDZ-peptide interactions , 2014, BMC Genomics.

[18]  Rolf Backofen,et al.  antaRNA – Multi-objective inverse folding of pseudoknot RNA using ant-colony optimization , 2015, BMC Bioinformatics.

[19]  G. Storz,et al.  Target prediction for small, noncoding RNAs in bacteria , 2006, Nucleic acids research.

[20]  Daniel S. Hirschberg,et al.  A linear space algorithm for computing maximal common subsequences , 1975, Commun. ACM.

[21]  Christus,et al.  A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins , 2022 .

[22]  Rolf Backofen,et al.  Global RNA recognition patterns of post‐transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo , 2016, The EMBO journal.

[23]  R F Doolittle,et al.  Progressive alignment of amino acid sequences and construction of phylogenetic trees from them. , 1996, Methods in enzymology.

[24]  Sean R. Eddy,et al.  Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .

[25]  Rolf Backofen,et al.  IntaRNA 2.0: enhanced and customizable prediction of RNA–RNA interactions , 2017, Nucleic Acids Res..

[26]  Rolf Backofen,et al.  CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains , 2014, Nucleic Acids Res..

[27]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[28]  P. Schuster,et al.  Complete suboptimal folding of RNA and the stability of secondary structures. , 1999, Biopolymers.

[29]  Rolf Backofen,et al.  SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics , 2015, Bioinform..

[30]  Gad M. Landau,et al.  ExpaRNA-P: simultaneous exact pattern matching and folding of RNAs , 2014, BMC Bioinformatics.

[31]  Daniel Gautheret,et al.  An assessment of bacterial small RNA target prediction programs , 2015, RNA biology.

[32]  J. McCaskill The equilibrium partition function and base pair binding probabilities for RNA secondary structure , 1990, Biopolymers.

[33]  Patrick R. Wright,et al.  A Stress-Induced Small RNA Modulates Alpha-Rhizobial Cell Cycle Progression , 2015, PLoS genetics.

[34]  Rolf Backofen,et al.  Computational Design of New and Recombinant Selenoproteins , 2004, CPM.

[35]  Dieter Deforce,et al.  The Small RNA ncS35 Regulates Growth in Burkholderia cenocepacia J2315 , 2018, mSphere.

[36]  Jens Georg,et al.  OxyS small RNA induces cell cycle arrest to allow DNA damage repair , 2017, The EMBO journal.

[37]  P. Stadler,et al.  LocARNA-P: accurate boundary prediction and improved detection of structural RNAs. , 2012, RNA.

[38]  Rolf Backofen,et al.  Characterizing leader sequences of CRISPR loci , 2016, Bioinform..

[39]  Rolf Backofen,et al.  antaRNA: ant colony-based RNA sequence design , 2015, Bioinform..

[40]  D. Higgins,et al.  T-Coffee: A novel method for fast and accurate multiple sequence alignment. , 2000, Journal of molecular biology.

[41]  Olaf Wolkenhauer,et al.  Customized workflow development and data modularization concepts for RNA-Sequencing and metatranscriptome experiments. , 2017, Journal of biotechnology.

[42]  Rolf Backofen,et al.  Conserved accessory proteins encoded with archaeal and bacterial Type III CRISPR-Cas gene cassettes that may specifically modulate, complement or extend interference activity , 2018, bioRxiv.

[43]  Robert D. Finn,et al.  Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families , 2017, Nucleic Acids Res..

[44]  Renan Valieris,et al.  Bioconda: sustainable and comprehensive software distribution for the life sciences , 2018, Nature Methods.

[45]  Robert Giegerich,et al.  The BRaliBase dent—a tale of benchmark design and interpretation , 2016, Briefings Bioinform..

[46]  Rolf Backofen,et al.  Freiburg RNA Tools: a web server integrating IntaRNA, ExpaRNA and LocARNA , 2010, Nucleic Acids Res..

[47]  R. Doolittle,et al.  Progressive sequence alignment as a prerequisitetto correct phylogenetic trees , 2007, Journal of Molecular Evolution.

[48]  Rolf Backofen,et al.  CPSP-web-tools: a server for 3D lattice protein studies , 2009, Bioinform..

[49]  Rolf Backofen,et al.  A graph kernel approach for alignment-free domain–peptide interaction prediction with an application to human SH3 domains , 2013, Bioinform..

[50]  Christian Höner zu Siederdissen,et al.  CMCompare webserver: comparing RNA families via covariance models , 2013, Nucleic Acids Res..

[51]  Rolf Backofen,et al.  Exact methods for lattice protein models , 2014, Bio Algorithms Med Syst..

[52]  Jens Georg,et al.  Workflow for a Computational Analysis of an sRNA Candidate in Bacteria. , 2018, Methods in molecular biology.

[53]  W. A. Beyer,et al.  Some Biological Sequence Metrics , 1976 .

[54]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[55]  Rolf Backofen,et al.  GLASSgo – Automated and Reliable Detection of sRNA Homologs From a Single Input Sequence , 2018, Front. Genet..

[56]  Rolf Backofen,et al.  Combinatorial ensemble miRNA target prediction of co-regulation networks with non-prediction data , 2017, Nucleic acids research.

[57]  Rolf Backofen,et al.  INFO-RNA—a server for fast inverse RNA folding satisfying sequence constraints , 2007, Nucleic Acids Res..

[58]  Peter F. Stadler,et al.  Alignment of RNA base pairing probability matrices , 2004, Bioinform..

[59]  Ömer Egecioglu,et al.  A new approach to sequence comparison: normalized sequence alignment , 2001, Bioinform..

[60]  M. Esteller Non-coding RNAs in human disease , 2011, Nature Reviews Genetics.

[61]  Fabrizio Costa,et al.  An efficient graph kernel method for non‐coding RNA functional prediction , 2017, Bioinform..

[62]  Charlotte M. Deane,et al.  Producing High-Accuracy Lattice Models from Protein Atomic Coordinates Including Side Chains , 2012, Adv. Bioinformatics.

[63]  M. Waterman,et al.  RNA secondary structure: a complete mathematical analysis , 1978 .

[64]  Rolf Backofen,et al.  Pre-mRNA Secondary Structures Influence Exon Recognition , 2007, PLoS genetics.

[65]  Louis L. McQuitty,et al.  Single and Multiple Hierarchical Classification by Reciprocal Pairs and Rank Order Types , 1966 .

[66]  Rolf Backofen,et al.  CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems , 2013, Nucleic acids research.

[67]  Fabrizio Costa,et al.  Fast Neighborhood Subgraph Pairwise Distance Kernel , 2010, ICML.

[68]  Jens Georg,et al.  The Small Regulatory RNA SyR1/PsrR1 Controls Photosynthetic Functions in Cyanobacteria[C][W] , 2014, Plant Cell.

[69]  Andreas S. Richter,et al.  Comparative genomics boosts target prediction for bacterial small RNAs , 2013, Proceedings of the National Academy of Sciences.

[70]  M. Waterman Secondary Structure of Single-Stranded Nucleic Acidst , 1978 .

[71]  Jens Georg,et al.  The sRNA NsiR4 is involved in nitrogen assimilation control in cyanobacteria by targeting glutamine synthetase inactivating factor IF7 , 2015, Proceedings of the National Academy of Sciences.

[72]  Rolf Backofen,et al.  INFO-RNA - a fast approach to inverse RNA folding , 2006, Bioinform..

[73]  Zasha Weinberg,et al.  R2R - software to speed the depiction of aesthetic consensus RNA secondary structures , 2011, BMC Bioinformatics.

[74]  Rolf Backofen,et al.  CARNA—alignment of RNA structure ensembles , 2012, Nucleic Acids Res..

[75]  Serafim Batzoglou,et al.  CONTRAfold: RNA secondary structure prediction without physics-based models , 2006, ISMB.

[76]  Patrick R. Wright,et al.  Differentiation of ncRNAs from small mRNAs in Escherichia coli O157:H7 EDL933 (EHEC) by combined RNAseq and RIBOseq – ryhB encodes the regulatory RNA RyhB and a peptide, RyhP , 2017, BMC Genomics.

[77]  Ivo L. Hofacker,et al.  Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams , 2015, Bioinform..

[78]  Michael Beckstette,et al.  Lightweight comparison of RNAs based on exact sequence–structure matches , 2009, German Conference on Bioinformatics.

[79]  Paul P. Gardner,et al.  A comprehensive benchmark of RNA–RNA interaction prediction tools for all domains of life , 2016, Bioinform..

[80]  Brad T. Sherman,et al.  DAVID-WS: a stateful web service to facilitate gene/protein list analysis , 2012, Bioinform..

[81]  O. Gotoh An improved algorithm for matching biological sequences. , 1982, Journal of molecular biology.

[82]  J. Vogel,et al.  Pervasive post‐transcriptional control of genes involved in amino acid metabolism by the Hfq‐dependent GcvB small RNA , 2011, Molecular microbiology.

[83]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[84]  Patrick R. Wright,et al.  Two separate modules of the conserved regulatory RNA AbcR1 address multiple target mRNAs in and outside of the translation initiation region , 2014, RNA biology.

[85]  Rolf Backofen,et al.  SECISDesign: a server to design SECIS-elements within the coding sequence , 2005, Bioinform..

[86]  Christian Höner zu Siederdissen,et al.  Discriminatory power of RNA family models , 2010, Bioinform..

[87]  Sean R. Eddy,et al.  Infernal 1.1: 100-fold faster RNA homology searches , 2013, Bioinform..

[88]  Rolf Backofen,et al.  Backofen R: MARNA: multiple alignment and consensus structure prediction of RNAs based on sequence structure comparisons , 2005 .

[89]  Rolf Backofen,et al.  CMV: visualization for RNA and protein family models and their comparisons , 2018, Bioinform..