The Use of Copper Flow Reactor Technology for the Continuous Synthesis of 1,4‐Disubstituted 1,2,3‐Triazoles

A library of 1,4-disubstituted 1,2,3-triazoles was synthesized using a copper flow reactor. Organic azides, generated in situ from alkyl halides and sodium azide, were reacted with acetylenes using the copper-catalyzed Huisgen 1,3-dipolar cycloaddition. This process eliminates both the handling of organic azides and the need for additional copper catalyst and permits the facile preparation of numerous triazoles in a continuous flow process.

[1]  J. Yoshida,et al.  Aryllithium compounds bearing alkoxycarbonyl groups: generation and reactions using a microflow system. , 2008, Angewandte Chemie.

[2]  Russell Dahl,et al.  Rapid multistep synthesis of 1,2,4-oxadiazoles in a single continuous microreactor sequence. , 2008, The Journal of organic chemistry.

[3]  Jun-ichi Yoshida,et al.  Flash chemistry: fast chemical synthesis by using microreactors. , 2008, Chemistry.

[4]  J. Yoshida,et al.  Selective monolithiation of dibromobiaryls using microflow systems. , 2008, Organic letters.

[5]  Rob C. Wheeler,et al.  Continuous Flow Microwave-Assisted Reaction Optimization and Scale-Up Using Fluorous Spacer Technology , 2008 .

[6]  Jacobus Johannes Maria Van Der Linden,et al.  Investigation of the Moffatt−Swern Oxidation in a Continuous Flow Microreactor System , 2008 .

[7]  B. Hamper,et al.  Direct uncatalyzed amination of 2-chloropyridine using a flow reactor , 2007 .

[8]  Simon J. F. Macdonald,et al.  Mesoscale Flow Chemistry: A Plug-Flow Approach to Reaction Optimisation , 2007 .

[9]  Christian H. Hornung,et al.  A Microcapillary Flow Disc Reactor for Organic Synthesis , 2007 .

[10]  Peng Wu,et al.  Catalytic Azide—Alkyne Cycloaddition: Reactivity and Applications , 2007 .

[11]  Jeremy L. Steinbacher,et al.  Greener approaches to organic synthesis using microreactor technology. , 2007, Chemical reviews.

[12]  A. Bogdan,et al.  Improving solid-supported catalyst productivity by using simplified packed-bed microreactors. , 2007, Angewandte Chemie.

[13]  Andreas Kirschning,et al.  Combining enabling techniques in organic synthesis: continuous flow processes with heterogenized catalysts. , 2006, Chemistry.

[14]  Masaaki Sato,et al.  Low pressure Pd-catalyzed carbonylation in an ionic liquid using a multiphase microflow system. , 2006, Chemical communications.

[15]  C. Stevens,et al.  Study of the Baylis-Hillman reaction in a microreactor environment : first continuous production of Baylis-Hillman adducts , 2006 .

[16]  J. Kobayashi,et al.  Triphase Hydrogenation Reactions Utilizing Palladium‐Immobilized Capillary Column Reactors and a Demonstration of Suitability for Large Scale Synthesis , 2005 .

[17]  Stefan Bräse,et al.  Organic azides: an exploding diversity of a unique class of compounds. , 2005, Angewandte Chemie.

[18]  S. Bräse,et al.  Organische Azide – explodierende Vielfalt bei einer einzigartigen Substanzklasse , 2005 .

[19]  Steven V Ley,et al.  The use of a continuous flow-reactor employing a mixed hydrogen-liquid flow stream for the efficient reduction of imines to amines. , 2005, Chemical communications.

[20]  J. Kobayashi,et al.  Hydrogenation reactions using scCO2 as a solvent in microchannel reactors. , 2005, Chemical communications.

[21]  Holger Löwe,et al.  Development of Microstructured Reactors to Enable Organic Synthesis Rather than Subduing Chemistry , 2005 .

[22]  Zoran Radić,et al.  In situ selection of lead compounds by click chemistry: target-guided optimization of acetylcholinesterase inhibitors. , 2005, Journal of the American Chemical Society.

[23]  M. Finn,et al.  Mechanism of the ligand-free CuI-catalyzed azide-alkyne cycloaddition reaction. , 2005, Angewandte Chemie.

[24]  M. Finn,et al.  Head-to-tail peptide cyclodimerization by copper-catalyzed azide-alkyne cycloaddition. , 2005, Angewandte Chemie.

[25]  S. Chittaboina,et al.  One-pot synthesis of triazole-linked glycoconjugates , 2005 .

[26]  K. Kacprzak Efficient one-pot synthesis of 1,2,3-triazoles from benzyl and alkyl halides , 2005 .

[27]  Volker Hessel,et al.  Organic Synthesis with Microstructured Reactors , 2005 .

[28]  F. Himo,et al.  Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. , 2004, Journal of the American Chemical Society.

[29]  W. Dehaen,et al.  A microwave-assisted click chemistry synthesis of 1,4-disubstituted 1,2,3-triazoles via a copper(I)-catalyzed three-component reaction. , 2004, Organic letters.

[30]  V. Fokin,et al.  One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles from in situ generated azides. , 2004, Organic letters.

[31]  Craig J Hawker,et al.  Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(i)-catalyzed ligation of azides and alkynes. , 2004, Angewandte Chemie.

[32]  Rustem F Ismagilov,et al.  Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. , 2004, Lab on a chip.

[33]  Takehiko Kitamori,et al.  A Microfluidic Device for Conducting Gas-Liquid-Solid Hydrogenation Reactions , 2004, Science.

[34]  Paul Watts,et al.  Benchmarking of Microreactor Applications , 2004 .

[35]  H. Kolb,et al.  The growing impact of click chemistry on drug discovery. , 2003, Drug discovery today.

[36]  Andreas Kirschning,et al.  Continuous flow techniques in organic synthesis. , 2003, Chemistry.

[37]  Helen Song,et al.  Millisecond kinetics on a microfluidic chip using nanoliters of reagents. , 2003, Journal of the American Chemical Society.

[38]  R. Ismagilov,et al.  Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. , 2003, Journal of the American Chemical Society.

[39]  Philip Hodge,et al.  Organic synthesis using polymer-supported reagents, catalysts and scavengers in simple laboratory flow systems. , 2003, Current opinion in chemical biology.

[40]  Paul Watts,et al.  Green chemistry: synthesis in micro reactors , 2003 .

[41]  Helen Song,et al.  A microfluidic system for controlling reaction networks in time. , 2003, Angewandte Chemie.

[42]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[43]  M. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions , 2001 .

[44]  K. Sharpless,et al.  Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen , 2001 .

[45]  Joel Morris,et al.  Substituent effects on the antibacterial activity of nitrogen-carbon-linked (azolylphenyl)oxazolidinones with expanded activity against the fastidious gram-negative organisms Haemophilus influenzae and Moraxella catarrhalis. , 2000, Journal of medicinal chemistry.

[46]  E. De Clercq,et al.  1,2,3-Triazole-[2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D- ribofuranosyl]-3'-spiro-5"-(4"-amino-1",2"-oxathiole 2",2"-dioxide) (TSAO) analogues: synthesis and anti-HIV-1 activity. , 1994, Journal of medicinal chemistry.

[47]  D. Buckle,et al.  Studies on 1,2,3-triazoles. 13. (Piperazinylalkoxy) [1]benzopyrano[2,3-d]-1,2,3-triazol-9(1H)-ones with combined H1-antihistamine and mast cell stabilizing properties. , 1986, Journal of medicinal chemistry.

[48]  D. Buckle,et al.  Studies on v-triazoles. 7. Antiallergic 9-oxo-1H,9H-benzopyrano[2,3-d]-v-triazoles. , 1983, Journal of medicinal chemistry.

[49]  H. Hiemstra,et al.  CuI‐Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective , 2005 .

[50]  H. Wamhoff 4.11 – 1,2,3-Triazoles and their Benzo Derivatives , 1984 .