Using genetic programming for the induction of oblique decision trees

In this paper, we present a genetically induced oblique decision tree algorithm. In traditional decision tree, each internal node has a testing criterion involving a single attribute. Oblique decision tree allows testing criterion to consist of more than one attribute. Here we use genetic programming to evolve and find an optimal testing criterion in each internal node for the set of samples at that node. This testing criterion is the characteristic function of a relation over existing attributes. We present the algorithm for construction of the oblique decision tree. We also compare the results of our proposed oblique decision tree with the one of C4.5 algorithm.

[1]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[2]  D. J. Newman,et al.  UCI Repository of Machine Learning Database , 1998 .

[3]  George D. Smith,et al.  The Effect of Evolved Attributes on Classification Algorithms , 2003, Australian Conference on Artificial Intelligence.

[4]  Dimitrios Kalles,et al.  GA Tree: genetically evolved decision trees , 2000, Proceedings 12th IEEE Internationals Conference on Tools with Artificial Intelligence. ICTAI 2000.

[5]  Eduardo Pérez,et al.  Constructive induction and genetic algorithms for learning concepts with complex interaction , 2005, GECCO '05.

[6]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[7]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[8]  Vipin Kumar,et al.  Introduction to Data Mining , 2022, Data Mining and Machine Learning Applications.

[9]  J. Ross Quinlan,et al.  Learning decision tree classifiers , 1996, CSUR.

[10]  Dimitrios Kalles,et al.  Breeding Decision Trees Using Evolutionary Techniques , 2001, ICML.

[11]  Fernando E. B. Otero,et al.  Genetic Programming for Attribute Construction in Data Mining , 2002, EuroGP.

[12]  David George Heath,et al.  A geometric framework for machine learning , 1993 .

[13]  Simon Kasif,et al.  A System for Induction of Oblique Decision Trees , 1994, J. Artif. Intell. Res..

[14]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[15]  Simon Kasif,et al.  Induction of Oblique Decision Trees , 1993, IJCAI.

[16]  Ian Witten,et al.  Data Mining , 2000 .

[17]  George D. Smith,et al.  Evolutionary Feature Construction Using Information Gain and Gini Index , 2004, EuroGP.

[18]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[19]  Marek Kretowski,et al.  An Evolutionary Algorithm for Oblique Decision Tree Induction , 2004, ICAISC.

[20]  A. Griffiths Introduction to Genetic Analysis , 1976 .

[21]  George D. Smith,et al.  Evolutionary constructive induction , 2005, IEEE Transactions on Knowledge and Data Engineering.

[22]  Christopher J. Merz,et al.  UCI Repository of Machine Learning Databases , 1996 .