MAV attitude determination by vector matching

An attitude determination algorithm suitable for micro aerial vehicle (MAV) applications is developed. The algorithm uses Earth's magnetic and gravity field vectors as observations. The magnetic field vector measurements are obtained from a magnetometer triad. The gravity field vector is measured by fusing information from an accelerometer triad with GPS/WAAS (wide area augmentation system) velocity measurements. Two linearization and estimator designs for implementing the algorithm are discussed. Simulation and experimental flight test results validating the algorithm are presented.

[1]  J. David Powell,et al.  Visual, cruise formation flying dynamics , 2000 .

[2]  D. Gebre-Egziabher,et al.  A gyro-free quaternion-based attitude determination system suitable for implementation using low cost sensors , 2000, IEEE 2000. Position Location and Navigation Symposium (Cat. No.00CH37062).

[3]  Demoz Gebre-Egziabher,et al.  Design and performance analysis of a low-cost aided dead reckoning navigator , 2001 .

[4]  M. Psiaki Attitude-Determination Filtering via Extended Quaternion Estimation , 2000 .

[5]  C. E. Barton,et al.  International Geomagnetic Reference Field : The seventh generation , 1997 .

[6]  I. Bar-Itzhack,et al.  Novel quaternion Kalman filter , 2002, IEEE Transactions on Aerospace and Electronic Systems.

[7]  I. Bar-Itzhack,et al.  Attitude Determination from Vector Observations: Quaternion Estimation , 1985, IEEE Transactions on Aerospace and Electronic Systems.

[8]  M. Idan,et al.  Estimation of Rodrigues parameters from vector observations , 1996, IEEE Transactions on Aerospace and Electronic Systems.

[9]  E. J. Lefferts,et al.  Kalman Filtering for Spacecraft Attitude Estimation , 1982 .

[10]  J. Stuelpnagel,et al.  A Least Squares Estimate of Satellite Attitude (Grace Wahba) , 1966 .

[11]  John Deyst,et al.  Single‐Antenna GPS‐Based Aircraft Attitude Determination , 1998 .

[12]  H. D. Black,et al.  A passive system for determining the attitude of a satellite , 1964 .

[13]  Itzhack Y. Bar-Itzhack,et al.  Recursive Attitude Determination from Vector Observations: Direction Cosine Matrix Identification , 1984 .

[14]  I. Bar-Itzhack REQUEST: A Recursive QUEST Algorithm for Sequential Attitude Determination , 1996 .

[15]  T. B. Putsyata,et al.  Analytical dynamics , 1973 .

[16]  Demoz Gebre-Egziabher,et al.  Calibration of Strapdown Magnetometers in Magnetic Field Domain , 2006 .

[17]  G. Wahba A Least Squares Estimate of Satellite Attitude , 1965 .

[18]  George M. Siouris,et al.  Aerospace Avionics Systems: A Modern Synthesis , 1993 .

[19]  D. Gebre-Egziabher,et al.  A low-cost GPS/inertial attitude heading reference system (AHRS) for general aviation applications , 1998, IEEE 1998 Position Location and Navigation Symposium (Cat. No.98CH36153).

[20]  J. Kuipers Quaternions and Rotation Sequences , 1998 .

[21]  I. Bar-Itzhack Recursive attitude determination from vector observations Euler angle estimation , 1985 .

[22]  M. Shuster,et al.  Three-axis attitude determination from vector observations , 1981 .

[23]  R.C. Hayward,et al.  Design of multi-sensor attitude determination systems , 2004, IEEE Transactions on Aerospace and Electronic Systems.