WEDM machining of MoNbTaTiZr refractory high entropy alloy

[1]  A. Kustas,et al.  A predictive analytical model of thermal conductivity for aluminum/transition metal high-entropy alloys , 2022, Scripta Materialia.

[2]  Noor Zaman Khan,et al.  Recent Advances in Machining of Composites and Super Alloys by Using Wire-EDM. A Review , 2021, Recent Advances in Manufacturing, Automation, Design and Energy Technologies.

[3]  Yongxian Huang,et al.  Welding of high entropy alloys: Progresses, challenges and perspectives , 2021 .

[4]  A. Günen,et al.  Microstructure, some mechanical properties and tribocorrosion wear behavior of boronized Al0.07Co1.26Cr1.80Fe1.42Mn1.35Ni1.10 high entropy alloy , 2021 .

[5]  Zhangyong Wu,et al.  Comparison in performance by emulsion and SiC nanofluids HS-WEDM multi-cutting process , 2021, The International Journal of Advanced Manufacturing Technology.

[6]  Gaurav Goel,et al.  Emergence of machine learning in the development of high entropy alloy and their prospects in advanced engineering applications , 2021, Emergent Materials.

[7]  C. Jen,et al.  A Review of the Latest Developments in the Field of Refractory High-Entropy Alloys , 2021, Crystals.

[8]  A. Baptista,et al.  An Overview of High-Entropy Alloys as Biomaterials , 2021, Metals.

[9]  S. Soo,et al.  The influence of cut direction and process parameters in wire electrical discharge machining of carbon fibre–reinforced plastic composites , 2021, The International Journal of Advanced Manufacturing Technology.

[10]  C. Figueroa,et al.  The response of boronized 34CrAlMo5-10 (EN41B) steel to nanoindentation, oxidation, and wear , 2020, Philosophical Magazine.

[11]  Kamal Kumar,et al.  Experimental Investigation on Surface Integrity and Wear Behavior of Ti-6Al-7Nb Alloy under Rough and Trim Cut Modes of Wire Electrical Discharge Machining , 2020, Journal of Materials Engineering and Performance.

[12]  E. Kanca,et al.  Characteristics and high temperature wear behavior of chrome vanadium carbide composite coatings produced by thermo-reactive diffusion , 2020 .

[13]  P. Liaw,et al.  Mechanical, corrosion, and wear properties of biomedical Ti–Zr–Nb–Ta–Mo high entropy alloys , 2020 .

[14]  H. Singh,et al.  Biocompatible High Entropy Alloys with Excellent Degradation Resistance in a Simulated Physiological Environment. , 2020, ACS applied bio materials.

[15]  Zhibing Zhang,et al.  Influence of alloying elements on mechanical and electronic properties of NbMoTaWX (X = Cr, Zr, V, Hf and Re) refractory high entropy alloys , 2020 .

[16]  K. Mouralova,et al.  WEDM Used for Machining High Entropy Alloys , 2020, Materials.

[17]  K. Mouralova,et al.  Machining of pure molybdenum using WEDM , 2020 .

[18]  A. Klink,et al.  High Entropy Alloy machining by EDM and ECM , 2020 .

[19]  A. Korsunsky,et al.  Micro-scale measurement & FEM modelling of residual stresses in AA6082-T6 Al alloy generated by wire EDM cutting , 2020 .

[20]  D. Canadinc,et al.  Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications , 2019, Intermetallics.

[21]  Dierk Raabe,et al.  High-entropy alloys , 2019, Nature Reviews Materials.

[22]  G. Littlefair,et al.  Optimizing dimensional accuracy of titanium alloy features produced by wire electrical discharge machining , 2019, Materials and Manufacturing Processes.

[23]  R. Matousek,et al.  Using a DoE for a comprehensive analysis of the surface quality and cutting speed in WED-machined hadfield steel , 2019, Journal of Mechanical Science and Technology.

[24]  Kamal Kumar,et al.  Surface modification of WC-Co alloy using Al and Si powder through WEDM: A thermal erosion process , 2018 .

[25]  Jiang Guo,et al.  On the machining of selective laser melting CoCrFeMnNi high-entropy alloy , 2018, Materials & Design.

[26]  J. Bednar,et al.  Quality of surface and subsurface layers after WEDM aluminum alloy 7475-T7351 including analysis of TEM lamella , 2018, The International Journal of Advanced Manufacturing Technology.

[27]  Meinam Annebushan Singh,et al.  Surface characteristics and erosion phenomena in WEDM of alumina composites , 2018 .

[28]  S. A. Sonawane,et al.  Optimization of machining parameters of WEDM for Nimonic-75 alloy using principal component analysis integrated with Taguchi method , 2018, Journal of King Saud University - Engineering Sciences.

[29]  Daniel B. Miracle,et al.  Development and exploration of refractory high entropy alloys—A review , 2018, Journal of Materials Research.

[30]  W. Yanling,et al.  Superhydrophobic surface prepared by micro-milling and WEDM on aluminum alloy , 2018, Materials Research Express.

[31]  J. Kovář,et al.  Effect of Width of Kerf on Machining Accuracy and Subsurface Layer After WEDM , 2018, Journal of Materials Engineering and Performance.

[32]  N. I. S. Hussein,et al.  Current Research Trends in Wire Electrical Discharge Machining (WEDM): A Review , 2018 .

[33]  Vinod Kumar Yadav,et al.  An experimental investigation on machining parameters of AISI D2 steel using WEDM , 2017 .

[34]  P. Dederichs,et al.  Structure of the high-entropy alloy AlxCrFeCoNi: fcc versus bcc , 2017 .

[35]  S. Sheikh,et al.  Predicting solid solubility in CoCrFeNiMx (M=4d transition metal) high-entropy alloys , 2017 .

[36]  Anish Kumar,et al.  Investigation of Micro-Cracks Susceptibility on Machined Pure Titanium Surface in WEDM Process , 2016 .

[37]  F. Klocke,et al.  Structure and Composition of the White Layer in the Wire-EDM Process , 2016 .

[38]  V. Kumar,et al.  An experimental study on trim cutting operation using metal powder mixed dielectric in WEDM of Nimonic-90 , 2016 .

[39]  S. Narendranath,et al.  Evaluation of WEDM performance characteristics of Inconel 706 for turbine disk application , 2015 .

[40]  E. Mohandas,et al.  Parametric optimization of wire electrical discharge machining on aluminium based composites through grey relational analysis , 2015 .

[41]  Kamal Kumar Jangra,et al.  An experimental study for multi-pass cutting operation in wire electrical discharge machining of WC-5.3% Co composite , 2015 .

[42]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[43]  Amit Rai Dixit,et al.  State of art in wire electrical discharge machining process and performance , 2014 .

[44]  Kamal Kumar Jangra,et al.  An Experimental and Comparative Study on Rough and Trim Cutting Operation in WEDM of Hard to Machine Materials , 2014 .

[45]  Jianwen Guo,et al.  Optimization of cutting conditions of YG15 on rough and finish cutting in WEDM based on statistical analyses , 2013 .

[46]  J. Paulo Davim,et al.  Nontraditional Machining Processes , 2013 .

[47]  J. S. Khamba,et al.  High-performance wire electrodes for wire electrical-discharge machining – a review , 2012 .

[48]  George M. Pharr,et al.  Nanoindentation in materials research: Past, present, and future , 2010 .

[49]  M. Z. Omar,et al.  EFFECT OF WIRE-EDM CUTTING ON FATIGUE STRENGTH OF AZ61 MAGNESIUM ALLOY , 2010 .

[50]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[51]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[52]  Bert Lauwers,et al.  Influence of the composition of WC-based cermets on manufacturability by wire-EDM , 2004 .

[53]  Jun Qu,et al.  Nanoindentation characterization of surface layers of electrical discharge machined WC/Co , 2003 .

[54]  Bharat Bhushan,et al.  Surface Roughness Analysis and Measurement Techniques , 2000 .

[55]  Athanasios G. Mamalis,et al.  The effect of electrode material on machinability in wire electro-discharge machining , 1997 .