Highly efficient solar-driven photocatalytic hydrogen evolution by a ternary 3D ZnIn2S4–MoS2 microsphere/1D TiO2 nanobelt heterostructure

Herein, a novel ternary three-dimensional (3D) ZnIn2S4–MoS2 microsphere/one-dimensional (1D) TiO2 nanobelt photocatalyst was created, achieving excellent photocatalytic H2 evolution performance under visible light irradiation.

[1]  Guang Zeng,et al.  Boosting electrochemical oxygen evolution over yolk-shell structured O–MoS2 nanoreactors with sulfur vacancy and decorated Pt nanoparticles , 2020 .

[2]  Huan Zhang,et al.  Facile in situ formation of a ternary 3D ZnIn2S4-MoS2 microsphere/1D CdS nanorod heterostructure for high-efficiency visible-light photocatalytic H2 production. , 2020, Nanoscale.

[3]  Hongzhong Zhang,et al.  SiO2@TiO2 Core@Shell Nanoparticles Deposited on 2D-Layered ZnIn2S4 to Form a Ternary Heterostructure for Simultaneous Photocatalytic Hydrogen Production and Organic Pollutant Degradation. , 2020, Inorganic chemistry.

[4]  Pengxiao Sun,et al.  Constructing electrostatic self-assembled 2D/2D ultra-thin ZnIn2S4/protonated g-C3N4 heterojunctions for excellent photocatalytic performance under visible light , 2019, Applied Catalysis B: Environmental.

[5]  V. Preethi,et al.  Photocatalytic recovery of H2 from H2S containing wastewater: Surface and interface control of photo-excitons in Cu2S@TiO2 core-shell nanostructures , 2019, Applied Catalysis B: Environmental.

[6]  T. Majima,et al.  In situ observation of NiS nanoparticles depositing on single TiO2 mesocrystal for enhanced photocatalytic hydrogen evolution activity , 2019, Applied Catalysis B: Environmental.

[7]  M. Solakidou,et al.  Efficient photocatalytic water-splitting performance by ternary CdS/Pt-N-TiO2 and CdS/Pt-N,F-TiO2: Interplay between CdS photo corrosion and TiO2-dopping , 2019, Applied Catalysis B: Environmental.

[8]  S. Pillai,et al.  Theoretical and experimental investigation of visible light responsive AgBiS2-TiO2 heterojunctions for enhanced photocatalytic applications , 2019, Applied Catalysis B: Environmental.

[9]  Can Li,et al.  Water Oxidation Catalysts for Artificial Photosynthesis , 2019, Advanced materials.

[10]  Z. Li,et al.  Noble metal Free MoS2/ZnIn2S4 nanocomposite for acceptorless photocatalytic semi-dehydrogenation of 1,2,3,4-tetrahydroisoquinoline to produce 3,4-dihydroisoquinoline , 2019, Applied Catalysis B: Environmental.

[11]  Yang Liu,et al.  Molybdenum disulfide quantum dots directing zinc indium sulfide heterostructures for enhanced visible light hydrogen production. , 2019, Journal of colloid and interface science.

[12]  T. Majima,et al.  Efficient photocatalytic H2 evolution using NiS/ZnIn2S4 heterostructures with enhanced charge separation and interfacial charge transfer , 2019, Applied Catalysis B: Environmental.

[13]  S. S. Kalanur,et al.  A nanoscale p–n junction photoelectrode consisting of an NiOx layer on a TiO2/CdS nanorod core-shell structure for highly efficient solar water splitting , 2019, Applied Catalysis B: Environmental.

[14]  Rongshu Zhu,et al.  Z scheme system ZnIn2S4/RGO/BiVO4 for hydrogen generation from water splitting and simultaneous degradation of organic pollutants under visible light , 2019, Renewable Energy.

[15]  S. Sultana,et al.  One-Pot-Architectured Au-Nanodot-Promoted MoS2/ZnIn2S4: A Novel p-n Heterojunction Photocatalyst for Enhanced Hydrogen Production and Phenol Degradation. , 2019, Inorganic chemistry.

[16]  B. Yan,et al.  Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution , 2019, Applied Catalysis B: Environmental.

[17]  Jun Lin,et al.  Facile ultrasound-driven formation and deposition of few-layered MoS2 nanosheets on CdS for highly enhanced photocatalytic hydrogen evolution , 2019, Applied Surface Science.

[18]  Qiuye Li,et al.  Boosting Visible-Light Photocatalytic Hydrogen Evolution with an Efficient CuInS2/ZnIn2S4 2D/2D Heterojunction , 2019, ACS Sustainable Chemistry & Engineering.

[19]  Longlu Wang,et al.  In-situ hydrogenation engineering of ZnIn2S4 for promoted visible-light water splitting , 2019, Applied Catalysis B: Environmental.

[20]  Yang Xia,et al.  Enhanced visible-light photocatalytic CO2 reduction performance of Znln2S4 microspheres by using CeO2 as cocatalyst , 2019, Applied Surface Science.

[21]  H. Cui,et al.  Construction of noble-metal-free TiO2 nanobelt/ZnIn2S4 nanosheet heterojunction nanocomposite for highly efficient photocatalytic hydrogen evolution , 2018, Nanotechnology.

[22]  Xianzhi Fu,et al.  MoS2/CQDs obtained by photoreduction for assembly of a ternary MoS2/CQDs/ZnIn2S4 nanocomposite for efficient photocatalytic hydrogen evolution under visible light , 2018 .

[23]  Dianzeng Jia,et al.  3D core–shell MoS2 superspheres composed of oriented nanosheets with quasi molecular superlattices: mimicked embryo formation and Li-storage properties , 2018 .

[24]  Xiaoyu Deng,et al.  Photocatalytic splitting of thiols to produce disulfides and hydrogen over PtS/ZnIn2S4 nanocomposites under visible light , 2018, Applied Catalysis B: Environmental.

[25]  Q. Hao,et al.  Construction of urchin-like ZnIn2S4-Au-TiO2 heterostructure with enhanced activity for photocatalytic hydrogen evolution , 2018, Applied Catalysis B: Environmental.

[26]  Yang Xia,et al.  Building a direct Z-scheme heterojunction photocatalyst by ZnIn2S4 nanosheets and TiO2 hollowspheres for highly-efficient artificial photosynthesis , 2018, Chemical Engineering Journal.

[27]  Xuxu Wang,et al.  In situ constructing interfacial contact MoS2/ZnIn2S4 heterostructure for enhancing solar photocatalytic hydrogen evolution , 2018, Applied Catalysis B: Environmental.

[28]  L. Qin,et al.  Decoration of WS2 as an effective noble-metal free cocatalyst on ZnIn2S4 for enhanced visible light photocatalytic hydrogen evolution , 2018, International Journal of Hydrogen Energy.

[29]  Jinhua Ye,et al.  Ultra-small freestanding amorphous molybdenum sulfide colloidal nanodots for highly efficient photocatalytic hydrogen evolution reaction , 2018, Applied Catalysis B: Environmental.

[30]  Qiuye Li,et al.  AgIn5S8 nanoparticles anchored on 2D layered ZnIn2S4 to form 0D/2D heterojunction for enhanced visible-light photocatalytic hydrogen evolution , 2018, Applied Catalysis B: Environmental.

[31]  Chang Q. Sun,et al.  Efficient charge separation between UiO-66 and ZnIn2S4 flowerlike 3D microspheres for photoelectronchemical properties , 2018, Applied Catalysis B: Environmental.

[32]  Qiuye Li,et al.  Constructing a ZnIn2S4 nanoparticle/MoS2-RGO nanosheet 0D/2D heterojunction for significantly enhanced visible-light photocatalytic H2 production. , 2018, Dalton transactions.

[33]  Kousik Bhunia,et al.  Controlled Synthesis of CuS/TiO2 Heterostructured Nanocomposites for Enhanced Photocatalytic Hydrogen Generation through Water Splitting. , 2018, Inorganic chemistry.

[34]  Junying Liu,et al.  Metallic 1T-LixMoS2 co-catalyst enhanced photocatalytic hydrogen evolution over ZnIn2S4 floriated microspheres under visible light irradiation , 2018 .

[35]  S. Luo,et al.  MoS2 Quantum Dot Growth Induced by S Vacancies in a ZnIn2S4 Monolayer: Atomic-Level Heterostructure for Photocatalytic Hydrogen Production. , 2017, ACS nano.

[36]  Juan Li,et al.  High efficiency for H2 evolution and NO removal over the Ag nanoparticles bridged g-C3N4 and WS2 heterojunction photocatalysts , 2017 .

[37]  Hongwen Yu,et al.  MoS2 nanosheets encapsulating TiO2 hollow spheres with enhanced photocatalytic activity for nitrophenol reduction , 2017 .

[38]  J. Zhang,et al.  Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency , 2017 .

[39]  Guowei Yang,et al.  A 2D self-assembled MoS2/ZnIn2S4 heterostructure for efficient photocatalytic hydrogen evolution. , 2017, Nanoscale.

[40]  W. Shi,et al.  Ag doping of Zn-In-S quantum dots for photocatalytic hydrogen evolution: Simultaneous bandgap narrowing and carrier lifetime elongation , 2017 .

[41]  Wenguang Tu,et al.  Constructing noble-metal-free Z-scheme photocatalytic overall water splitting systems using MoS2 nanosheet modified CdS as a H2 evolution photocatalyst , 2017 .

[42]  J. Crittenden,et al.  Photocatalytic wastewater purification with simultaneous hydrogen production using MoS2 QD-decorated hierarchical assembly of ZnIn2S4 on reduced graphene oxide photocatalyst. , 2017, Water research.

[43]  Wenguang Tu,et al.  Interface engineering of a noble-metal-free 2D–2D MoS2/Cu-ZnIn2S4 photocatalyst for enhanced photocatalytic H2 production , 2017 .

[44]  W. Qu,et al.  Designing MoS2 nanocatalysts with increased exposure of active edge sites for anthracene hydrogenation reaction , 2017 .

[45]  Yang Xia,et al.  Superiority of graphene over carbon analogs for enhanced photocatalytic H2-production activity of ZnIn2S4 , 2017 .

[46]  Wei Zhou,et al.  Cubic quantum dot/hexagonal microsphere ZnIn2S4 heterophase junctions for exceptional visible-light-driven photocatalytic H2 evolution , 2017 .

[47]  Yang Xia,et al.  Heterojunction construction between TiO2 hollowsphere and ZnIn2S4 flower for photocatalysis application , 2017 .

[48]  H. Ding,et al.  A simple route to synthesize mesoporous titania from TiOSO4: Influence of the synthesis conditions on the structural, pigments and photocatalytic properties , 2016 .

[49]  Yongjun Yuan,et al.  MoS2-graphene/ZnIn2S4 hierarchical microarchitectures with an electron transport bridge between light-harvesting semiconductor and cocatalyst: A highly efficient photocatalyst for solar hydrogen generation , 2016 .

[50]  Quanjun Xiang,et al.  Hierarchical Layered WS2 /Graphene-Modified CdS Nanorods for Efficient Photocatalytic Hydrogen Evolution. , 2016, ChemSusChem.

[51]  Wei Chen,et al.  Novel mesoporous P-doped graphitic carbon nitride nanosheets coupled with ZnIn2S4 nanosheets as efficient visible light driven heterostructures with remarkably enhanced photo-reduction activity. , 2016, Nanoscale.

[52]  J. Jang,et al.  Fabrication of a ternary CdS/ZnIn2S4/TiO2 heterojunction for enhancing photoelectrochemical performance: effect of cascading electron–hole transfer , 2015 .

[53]  Ling Wu,et al.  Noble-metal-free MoS2 co-catalyst decorated UiO-66/CdS hybrids for efficient photocatalytic H2 production , 2015 .

[54]  R. Amal,et al.  Z-schematic water splitting into H2 and O2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator. , 2015, Journal of the American Chemical Society.

[55]  Z. Li,et al.  Facile one-pot solvothermal method to synthesize sheet-on-sheet reduced graphene oxide (RGO)/ZnIn2S4 nanocomposites with superior photocatalytic performance. , 2014, ACS applied materials & interfaces.

[56]  Wangliang Yang,et al.  Synthesis and photocatalytic performance of novel hierarchical hollow silica sphere supported TiO2 nanoparticles , 2014 .

[57]  Muhammad Safdar,et al.  Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. , 2013, Nanoscale.

[58]  C. Tung,et al.  Facile synthesis of hierarchical ZnIn2S4 submicrospheres composed of ultrathin mesoporous nanosheets as a highly efficient visible-light-driven photocatalyst for H2 production , 2013 .

[59]  Can Li,et al.  Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as Cocatalyst under visible light irradiation. , 2008, Journal of the American Chemical Society.

[60]  Can Li,et al.  Artificial photosynthesis systems for catalytic water oxidation , 2019, Water Oxidation Catalysts.

[61]  Z. Li,et al.  MoS2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn2S4 under visible light irradiations , 2014 .