Durability of switching behaviour after outdoor exposure for a suspended particle device switchable glazing

[1]  J. Xamán,et al.  Thermal evaluation of a Room coupled with a Double Glazing Window with/without a solar control film for Mexico , 2017 .

[2]  Santiranjan Shannigrahi,et al.  A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment , 2017 .

[3]  Brian Norton,et al.  First outdoor characterisation of a PV powered suspended particle device switchable glazing , 2016, Solar Energy Materials and Solar Cells.

[4]  Laurence Gill,et al.  The performance of an evacuated tube solar hot water system in a domestic house throughout a year in a northern maritime climate (Dublin) , 2016 .

[5]  Brian Norton,et al.  Behaviour of a SPD switchable glazing in an outdoor test cell with heat removal under varying weather conditions , 2016 .

[6]  Brian Norton,et al.  Measured thermal & daylight performance of an evacuated glazing using an outdoor test cell , 2016 .

[7]  Brian Norton,et al.  Daylighting performance and glare calculation of a suspended particle device switchable glazing , 2016 .

[8]  Brian Norton,et al.  Measured thermal performance of a combined suspended particle switchable device evacuated glazing , 2016 .

[9]  Guangming Wu,et al.  Gasochromic smart window: optical and thermal properties, energy simulation and feasibility analysis , 2016 .

[10]  D. Karamanis,et al.  Solar energy materials for glazing technologies , 2016 .

[11]  Brian Norton,et al.  Measured overall heat transfer coefficient of a suspended particle device switchable glazing , 2015 .

[12]  Claes-Göran Granqvist,et al.  Simulation of the thickness dependence of the optical properties of suspended particle devices , 2015 .

[13]  Valentina Serra,et al.  Spectral and angular solar properties of a PCM-filled double glazing unit , 2015 .

[14]  Properties , 2014 .

[15]  Valentina Serra,et al.  Experimental analysis of the energy performance of a full-scale PCM glazing prototype , 2014 .

[16]  Lacour M Ayompe,et al.  Analysis of the Thermal Performance of a Solar Water Heating System with Flat Plate Collectors in a Temperate Climate , 2013 .

[17]  Bjørn Petter Jelle,et al.  Solar radiation glazing factors for window panes, glass structures and electrochromic windows in buildings-Measurement and calculation , 2013 .

[18]  Sabine Hoffmann,et al.  An empirical study of a full-scale polymer thermochromic window and its implications on material science development objectives , 2013 .

[19]  Valentina Serra,et al.  Improving thermal comfort conditions by means of PCM glazing systems , 2013 .

[20]  Claes-Göran Granqvist,et al.  Toward a quantitative model for suspended particle devices: Optical scattering and absorption coefficients , 2013 .

[21]  Eric Masanet,et al.  Regional performance targets for transparent near-infrared switching electrochromic window glazings , 2013 .

[22]  Arild Gustavsen,et al.  Fenestration of Today and Tomorrow: A State-of-the-Art Review and Future Research Opportunities , 2013 .

[23]  Francesco Goia Thermo-physical behaviour and energy performance assessment of PCM glazing system configurations: A numerical analysis , 2012 .

[24]  C. Granqvist Oxide electrochromics: An introduction to devices and materials , 2012 .

[25]  Arild Gustavsen,et al.  Properties, Requirements and Possibilities of Smart Windows for Dynamic Daylight and Solar Energy Control in Buildings: A State-of-the-Art Review , 2010 .

[26]  Giuseppe Chidichimo,et al.  Self-adjusting smart windows based on polymer-dispersed liquid crystals , 2009 .

[27]  Stephen M. Morris,et al.  High-efficiency multistable switchable glazing using smectic A liquid crystals , 2009 .

[28]  Carmen Vázquez,et al.  Modelling and electro-optical testing of suspended particle devices , 2008 .

[29]  Gernot M. Wallner,et al.  Property and performance requirements for thermotropic layers to prevent overheating in an all polymeric flat-plate collector , 2008 .

[30]  C. Lampert Chromogenic smart materials , 2004 .

[31]  C. Lampert Large-Area Smart Glass And Integrated Photovoltaics , 2003 .

[32]  Moon-Hee Lee,et al.  Thermochromic glazing of windows with better luminous solar transmittance , 2002 .

[33]  J. Bell,et al.  Simulation of electrochromic switching voltages at elevated temperatures , 2001 .

[34]  Wolfgang Graf,et al.  Stability of gasochromic WO3 films , 2000 .

[35]  Eleanor S. Lee,et al.  Application issues for large-area electrochromic windows in commercial buildings , 2000 .

[36]  Arno Seeboth,et al.  Materials for intelligent sun protecting glazing , 2000 .

[37]  Claes-Göran Granqvist,et al.  Electrochromic tungsten oxide films: Review of progress 1993–1998 , 2000 .

[38]  J. Bell,et al.  Effect of temperature on electrochromic device switching voltages , 1999 .

[39]  Junichi Nagai,et al.  Durability evaluation of electrochromic devices – an industry perspective , 1999 .

[40]  Kuo-Chuan Ho,et al.  The influence of charge capacity ratio on the performance of a complementary electrochromic system , 1999 .

[41]  C. E. Tracy,et al.  Accelerated Durability Testing of Electrochromic Windows , 1998 .

[42]  Haruo Watanabe,et al.  Intelligent window using a hydrogel layer for energy efficiency , 1998 .

[43]  Volker Wittwer,et al.  Materials for solar energy conversion: An overview , 1998 .

[44]  C. Lampert Smart switchable glazing for solar energy and daylight control , 1998 .

[45]  C. Lampert Optical switching technology for glazings , 1993 .

[46]  Carl M. Lampert,et al.  Chemical and Optical Properties of Electrochromic Nickel Oxide Films , 1985, Optics & Photonics.

[47]  A. Marks Electrooptical characteristics of dipole suspensions. , 1969, Applied optics.