Distributed Minimum Energy Data Gathering and Aggregation in Sensor Networks

In this paper, we propose an effective distributed algorithm to solve the minimum energy data gathering (MEDG) problem in wireless sensor networks. The problem objective is to find an optimal transmission structure on the network graph, such that the total energy consumed by the sensor nodes is minimized. We formulate the problem as a non-linear optimization problem. The formulation considers in-network data aggregation and respects the capacity of the wireless shared-medium. We apply Lagrangian dualization technique on this formulation to obtain a subgradient algorithm for computing the optimal transmission structure. The subgradient algorithm is asynchronous and amenable to fully distributed implementations, which corresponds to the decentralized nature of sensor networks.

[1]  Wendi Heinzelman,et al.  Energy-efficient communication protocol for wireless microsensor networks , 2000, Proceedings of the 33rd Annual Hawaii International Conference on System Sciences.

[2]  Frank Kelly,et al.  Rate control for communication networks: shadow prices, proportional fairness and stability , 1998, J. Oper. Res. Soc..

[3]  John Anderson,et al.  Wireless sensor networks for habitat monitoring , 2002, WSNA '02.

[4]  Parameswaran Ramanathan,et al.  Sensor Deployment Strategy for Detection of Targets Traversing a Region , 2003, Mob. Networks Appl..

[5]  Deborah Estrin,et al.  Modelling Data-Centric Routing in Wireless Sensor Networks , 2002 .

[6]  Deborah Estrin,et al.  Simultaneous Optimization for Concave Costs: Single Sink Aggregation or Single Source Buy-at-Bulk , 2003, SODA '03.

[7]  Konstantinos Kalpakis,et al.  Efficient algorithms for maximum lifetime data gathering and aggregation in wireless sensor networks , 2003, Comput. Networks.

[8]  Steven H. Low,et al.  Optimization flow control—I: basic algorithm and convergence , 1999, TNET.

[9]  Roger Wattenhofer,et al.  Gathering correlated data in sensor networks , 2004, DIALM-POMC '04.

[10]  Cauligi S. Raghavendra,et al.  PEGASIS: Power-efficient gathering in sensor information systems , 2002, Proceedings, IEEE Aerospace Conference.

[11]  Deborah Estrin,et al.  The impact of data aggregation in wireless sensor networks , 2002, Proceedings 22nd International Conference on Distributed Computing Systems Workshops.

[12]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[13]  Stephen P. Boyd,et al.  Simultaneous routing and power allocation in CDMA wireless data networks , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[14]  Hanif D. Sherali,et al.  Recovery of primal solutions when using subgradient optimization methods to solve Lagrangian duals of linear programs , 1996, Oper. Res. Lett..

[15]  Joongseok Park,et al.  Maximum Lifetime Routing In Wireless Sensor Networks ∗ , 2005 .

[16]  Bhaskar Krishnamachari,et al.  Optimal information extraction in energy-limited wireless sensor networks , 2004, IEEE Journal on Selected Areas in Communications.

[17]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[18]  Pierre A. Humblet,et al.  A Distributed Algorithm for Minimum-Weight Spanning Trees , 1983, TOPL.

[19]  Jorge J. Moré,et al.  The NEOS Server , 1998 .

[20]  Klara Nahrstedt,et al.  Optimal resource allocation in wireless ad hoc networks: a price-based approach , 2006 .

[21]  Baochun Li,et al.  Distributed Data Gathering in Multi-sink Sensor Networks with Correlated Sources , 2006, Networking.