Robust numerical methods for robust control

We present numerical methods for the solution of the optimal H∞ control problem. In particular, we investigate the iterative part often called the γ-iteration. We derive a method with better robustness in the presence of rounding errors than other existing methods. It remains robust in the presence of rounding errors even as γ approaches its optimal value. For the computation of a suboptimal controller, we avoid solving algebraic Riccati equations with their problematic matrix inverses and matrix products by adapting recently suggested methods for the computation of deflating subspaces of skew-Hamiltonian/Hamiltonian pencils. These methods are applicable even if the pencil has eigenvalues on the imaginary axis. We compare the new method with older methods and present several examples.

[1]  Alan J. Laub,et al.  Numerically Reliable Computation of Optimal Performance in Singular $H_{\inf}$ Control , 1997 .

[2]  Peter Benner,et al.  Numerical Computation of Deflating Subspaces of Skew-Hamiltonian/Hamiltonian Pencils , 2002, SIAM J. Matrix Anal. Appl..

[3]  Alan J. Laub,et al.  The LMI control toolbox , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[4]  Volker Mehrmann,et al.  Canonical forms for Hamiltonian and symplectic matrices and pencils , 1999 .

[5]  A. Bunse-Gerstner Matrix factorizations for symplectic QR-like methods , 1986 .

[6]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[7]  Leiba Rodman,et al.  Stability of Invariant Lagrangian Subspaces II , 1989 .

[8]  Christian Mehl,et al.  Condensed Forms for Skew-Hamiltonian/Hamiltonian Pencils , 1999, SIAM J. Matrix Anal. Appl..

[9]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[10]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[11]  R. Y. Chiang,et al.  MATHLAB - Robust Control Toolbox , 2000 .

[12]  Gene H. Golub,et al.  Matrix computations , 1983 .

[13]  P. Lancaster,et al.  The Algebraic Riccati Equation , 1995 .

[14]  H. Wimmer,et al.  Monotonicity of maximal solutions of algebraic Riccati equations , 1985 .

[15]  V. Mehrmann The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .

[16]  Peter Benner,et al.  Computational Methods for Linear-Quadratic Optimization , 1999 .

[17]  A. Laub A schur method for solving algebraic Riccati equations , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[18]  Petko Hr. Petkov,et al.  Direct Formulae for the H 1 Sub-Optimal Central Controller 1 , 1998 .

[19]  Michael G. Safonov,et al.  A Generalized Eigenproblem Solution for Singular H2 and H∞ Problems , 1992 .

[20]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[21]  Volker Mehrmann,et al.  Existence, Uniqueness, and Parametrization of Lagrangian Invariant Subspaces , 2001, SIAM J. Matrix Anal. Appl..

[22]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[23]  Peter Benner,et al.  Numerical Methods for Linear Quadratic and H∞ Control Problems , 1999 .

[24]  P. Dooren A Generalized Eigenvalue Approach for Solving Riccati Equations , 1980 .

[25]  V. Mehrmann,et al.  A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .

[26]  C. Loan,et al.  A Schur decomposition for Hamiltonian matrices , 1981 .

[27]  G. Hewer Existence theorems for positive semidefinite and sign indefinite stabilizing solutions of H ∞ Riccati equations , 1993 .

[28]  A. Laub,et al.  Generalized eigenproblem algorithms and software for algebraic Riccati equations , 1984, Proceedings of the IEEE.

[29]  Harry L. Trentelman,et al.  Control theory for linear systems , 2002 .

[30]  V. Mehrmann,et al.  A MULTISHIFT ALGORITHM FOR THE NUMERICAL SOLUTION OF ALGEBRAIC RICCATI EQUATIONS , 1993 .

[31]  Vasile Sima,et al.  Algorithms for Linear-Quadratic Optimization , 2021 .

[32]  Sabine Van Huffel,et al.  SLICOT—A Subroutine Library in Systems and Control Theory , 1999 .

[33]  V. Mehrmann,et al.  A new method for computing the stable invariant subspace of a real Hamiltonian matrix , 1997 .