Fractional integral operators in the complex matrix variate case

Abstract A formal definition of fractional integrals in the complex matrix variate case is given here. This definition will encompass all the various fractional integral operators introduced by various authors in the real scalar and matrix cases. The new definition is introduced in terms of M-convolutions of products and ratios of matrices in the complex domain. Their connections to statistical distribution theory, Mellin convolutions, M-transforms and Mellin transform are pointed out. Some basic properties are given and a pathway extension of the new definition is also given. The pathway extension will provide a switching mechanism to move among three different families of functions.