Electron–phonon processes of the silicon-vacancy centre in diamond

We investigate phonon induced electronic dynamics in the ground and excited states of the negatively charged silicon-vacancy ($\mathrm{SiV}^-$) centre in diamond. Optical transition line widths, transition wavelength and excited state lifetimes are measured for the temperature range 4-350 K. The ground state orbital relaxation rates are measured using time-resolved fluorescence techniques. A microscopic model of the thermal broadening in the excited and ground states of the $\mathrm{SiV}^-$ centre is developed. A vibronic process involving single-phonon transitions is found to determine orbital relaxation rates for both the ground and the excited states at cryogenic temperatures. We discuss the implications of our findings for coherence of qubit states in the ground states and propose methods to extend coherence times of $\mathrm{SiV}^-$ qubits.

[1]  F. Ham Dynamical Jahn-Teller Effect in Paramagnetic Resonance Spectra: Orbital Reduction Factors and Partial Quenching of Spin-Orbit Interaction , 1965 .

[2]  Jones,et al.  The Twelve-Line 1.682 eV Luminescence Center in Diamond and the Vacancy-Silicon Complex. , 1996, Physical review letters.

[3]  M. Lukin,et al.  Fault-tolerant quantum repeaters with minimal physical resources, and implementations based on single photon emitters , 2005, quant-ph/0502112.

[4]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[5]  Neil B. Manson,et al.  The negatively charged nitrogen-vacancy centre in diamond: the electronic solution , 2010, 1008.5224.

[6]  M. Doherty,et al.  Electronic structure of the negatively charged silicon-vacancy center in diamond , 2013, 1310.3131.

[7]  Andrei Faraon,et al.  Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. , 2012, Physical review letters.

[8]  E. Hu,et al.  Coupling of silicon-vacancy centers to a single crystal diamond cavity. , 2011, Optics express.

[9]  D. Kleppner,et al.  Inhibited spontaneous emission by a Rydberg atom. , 1985, Physical review letters.

[10]  Oskar Painter,et al.  Two-dimensional phononic-photonic band gap optomechanical crystal cavity. , 2014, Physical review letters.

[11]  Ronald L. Walsworth,et al.  Atom-like crystal defects: From quantum computers to biological sensors , 2014 .

[12]  D. D. Awschalom,et al.  Measurement and Control of Single Nitrogen-Vacancy Center Spins above 600 K , 2012, 1201.4420.

[13]  Willem L. Vos,et al.  Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals , 2004, Nature.

[14]  Christian Hepp,et al.  Electronic structure of the silicon vacancy color center in diamond. , 2013, Physical review letters.

[15]  Daniel Kleppner,et al.  Inhibited Spontaneous Emission , 1981 .

[16]  Igor Aharonovich,et al.  Diamond-based single-photon emitters , 2011 .

[17]  F. Jelezko,et al.  Dark states of single nitrogen-vacancy centers in diamond unraveled by single shot NMR. , 2010, Physical review letters.

[18]  Christian Hepp,et al.  Optical signatures of silicon-vacancy spins in diamond. , 2014, Nature communications.

[19]  Christian Hepp,et al.  All-optical formation of coherent dark states of silicon-vacancy spins in diamond. , 2014, Physical review letters.

[20]  Martin Fischer,et al.  Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium , 2010, 1008.4736.

[21]  Clark,et al.  Silicon defects in diamond. , 1995, Physical review. B, Condensed matter.

[22]  C. Santori,et al.  Coupling of nitrogen-vacancy centers to photonic crystal resonators in monocrystalline diamond , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[23]  D. Twitchen,et al.  Optical properties of the neutral silicon split-vacancy center in diamond , 2011 .

[24]  Efthimios Kaxiras,et al.  Properties of nitrogen-vacancy centers in diamond: the group theoretic approach , 2010, 1010.1338.

[25]  Christian Schneider,et al.  Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength , 2012, Nature.

[26]  P. Barclay,et al.  Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond. , 2009, Physical review letters.

[27]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[28]  John D. Dow,et al.  The Jahn-Teller effect in molecules and crystals , 1972 .

[29]  M W Doherty,et al.  Phonon-induced population dynamics and intersystem crossing in nitrogen-vacancy centers. , 2014, Physical review letters.

[30]  G. Davies,et al.  Vibronic spectra in diamond , 1974 .

[31]  J. O'Brien Optical Quantum Computing , 2007, Science.

[32]  H. W. Thompson,et al.  Advances in Spectroscopy , 1959 .

[33]  Martin Fischer,et al.  Low-temperature investigations of single silicon vacancy colour centres in diamond , 2012, 1210.3201.

[34]  D. Budker,et al.  Temperature shifts of the resonances of the NV-center in diamond , 2013, 1310.7303.

[35]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[36]  Nanomechanical resonant structures in single-crystal diamond , 2013, 1309.1834.

[37]  J. Maze,et al.  Ab initio study of the split silicon-vacancy defect in diamond: Electronic structure and related properties , 2013, 1310.2137.

[38]  S. Gsell,et al.  Electronic transitions of single silicon vacancy centers in the near-infrared spectral region , 2012, 1204.4994.

[39]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[40]  C. Becher,et al.  Modeling of optomechanical coupling in a phoxonic crystal cavity in diamond. , 2014, Optics express.

[41]  S. Zhang,et al.  Dynamic Jahn-Teller effect in the NV(-) center in diamond. , 2011, Physical review letters.

[42]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[43]  M. Lukin,et al.  Indistinguishable photons from separated silicon-vacancy centers in diamond. , 2014, Physical review letters.

[44]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[45]  S. Gsell,et al.  Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond. , 2014, Nano letters.

[46]  E. Togan,et al.  Observation of entanglement between a quantum dot spin and a single photon , 2012, Nature.

[47]  Jens Koch,et al.  Controlling the spontaneous emission of a superconducting transmon qubit. , 2008, Physical review letters.

[48]  Y. P. Srivastava Advances in Spectroscopy , 1991 .

[49]  G. Fischer Vibronic coupling : the interaction between the electronic and nuclear motions , 1984 .

[50]  M. Markham,et al.  Coherent optical transitions in implanted nitrogen vacancy centers. , 2014, Nano letters.

[51]  H. Maeta,et al.  Thermal expansion of a high purity synthetic diamond single crystal at low temperatures , 2002 .

[52]  R. N. Schouten,et al.  Unconditional quantum teleportation between distant solid-state quantum bits , 2014, Science.

[53]  C. Degen,et al.  Single-crystal diamond nanomechanical resonators with quality factors exceeding one million , 2012, Nature Communications.

[54]  Harald Giessen,et al.  Diamond nanophotonics , 2012, Beilstein journal of nanotechnology.

[55]  Yoshihisa Yamamoto,et al.  Mesoscopic Quantum Optics , 1999 .

[56]  Y. Lim,et al.  Repeat-until-success quantum computing using stationary and flying qubits (14 pages) , 2005, quant-ph/0508218.

[57]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[58]  F. Jelezko,et al.  Multiple intrinsically identical single-photon emitters in the solid state , 2013, Nature Communications.

[59]  B. Djafari-Rouhani,et al.  A one-dimensional optomechanical crystal with a complete phononic band gap , 2014, Nature Communications.

[60]  Philip Hemmer,et al.  All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond. , 2014, Physical review letters.

[61]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[62]  Sauér,et al.  1.681-eV luminescence center in chemical-vapor-deposited homoepitaxial diamond films. , 1994, Physical review. B, Condensed matter.

[63]  M. Plenio,et al.  Coupling of nitrogen vacancy centres in nanodiamonds by means of phonons , 2013, 1304.2192.