Colossal permittivity and low loss in (In0.5Ta0.5)0.1Ti0.9O2 ceramics with a stable temperature range of X9D

[1]  N. Chanlek,et al.  Significantly Improved Dielectric Properties of Tin and Niobium Co-doped Rutile TiO2 Driven by Maxwell-Wagner Polarization , 2022, Journal of Alloys and Compounds.

[2]  Juan Liu,et al.  Controllable low-temperature flash sintering and giant dielectric performance of (Zn, Ta) co-doped TiO2 ceramics , 2022, Ceramics International.

[3]  Zhanggui Hu,et al.  Giant dielectric response and relaxation behavior in (Tm + Ta) co-doped TiO2 ceramics. , 2022, Physical chemistry chemical physics : PCCP.

[4]  Zhanggui Hu,et al.  Interface effects and defect clusters inducing thermal stability and giant dielectric response in (Ta+Y)-co-doped TiO2 ceramics , 2021, Journal of Materials Science: Materials in Electronics.

[5]  Haitao Zhou,et al.  Colossal dielectric behavior of (Ho, Ta) co‐doped rutile TiO2 ceramics , 2021, Journal of Materials Science: Materials in Electronics.

[6]  Lingxia Li,et al.  Colossal permittivity (Nb, Mg) co-doped BaTiO3 ceramics with excellent temperature stability and high insulation resistivity , 2021 .

[7]  Peng Liu,et al.  High-performance colossal permittivity for textured (Al+Nb) co-doped TiO2 ceramics sintered in nitrogen atmosphere , 2021, Journal of the European Ceramic Society.

[8]  X. Chao,et al.  Good dielectric performance and broadband dielectric polarization in Ag, Nb co‐doped TiO 2 , 2021 .

[9]  Y.Y. Li,et al.  Colossal dielectric properties in (TaxSm1-x)0.04Ti0·96O2 , 2020 .

[10]  X. Chao,et al.  Enhanced dielectric performance of (Ag1/4Nb3/4)0.01Ti0.99O2 ceramic prepared by a wet-chemistry method , 2020, Ceramics International.

[11]  D. Lu,et al.  Synergistic effect of terbium and calcium ions on the temperature stability and dielectric loss of BaTiO3-based ceramics , 2019, Journal of Alloys and Compounds.

[12]  Fei Li,et al.  Colossal dielectric behavior of Co-doped TiO2 ceramics: A comparative study , 2019, Journal of Alloys and Compounds.

[13]  Zhuo Wang,et al.  Grain boundary effect on dielectric properties of (Nd0.5Nb0.5) Ti1-O2 ceramicsceamics , 2019, Journal of Alloys and Compounds.

[14]  Zhuo Wang,et al.  Bismuth oxide modified europium and niobium co-doped titanium dioxide ceramics: Colossal permittivity and low dielectric loss design , 2019, Journal of Alloys and Compounds.

[15]  S. Leng,et al.  Colossal permittivity of Sb and Ga co-doped rutile TiO2 ceramics , 2019, Ceramics International.

[16]  X. Chao,et al.  Good thermal stability, giant permittivity and low dielectric loss for X9R–type (Ag 1/4 Nb 3/4 ) 0.005 Ti 0.995 O 2 ceramics , 2018, Journal of the American Ceramic Society.

[17]  L. Y. Sun,et al.  Colossal dielectric properties in (Ta0.5Al0.5)xTi1−xO2 ceramics , 2018 .

[18]  Zhang Ning,et al.  The effect of segregation structure on the colossal permittivity properties of (La0.5Nb0.5)xTi1−xO2 ceramics , 2018 .

[19]  X. Chao,et al.  High thermal stability and excellent dielectric properties of a novel X8R-type CdCu3Ti4O12 ceramics through a sol-gel technique , 2018 .

[20]  L. Y. Sun,et al.  Improved dielectric properties in CaCu3Ti4O12 ceramics modified by TiO2 , 2018, Journal of Materials Science: Materials in Electronics.

[21]  Hui Peng,et al.  Origin of giant permittivity in Ta, Al co-doped TiO 2 : Surface layer and internal barrier capacitance layer effects , 2017 .

[22]  L. Y. Sun,et al.  Colossal permittivity and impedance analysis of tantalum and samarium co-doped TiO2 ceramics , 2017 .

[23]  T. Frankcombe,et al.  Colossal permittivity behavior and its origin in rutile (Mg1/3Ta2/3)xTi1-xO2 , 2017, Scientific Reports.

[24]  Xianwei Wang,et al.  Dielectric properties of Y and Nb co-doped TiO2 ceramics , 2017, Scientific Reports.

[25]  Chao Yang,et al.  Colossal permittivity of (Mg + Nb) co-doped TiO2 ceramics with low dielectric loss , 2017 .

[26]  T. Frankcombe,et al.  Colossal permittivity with ultralow dielectric loss in In+Ta co-doped rutile TiO2 , 2017 .

[27]  Yongli Song,et al.  The contribution of doped-Al to the colossal permittivity properties of AlxNb0.03Ti0.97−xO2 rutile ceramics , 2016 .

[28]  Yun Liu,et al.  Colossal Dielectric Behavior of Ga+Nb Co-Doped Rutile TiO2. , 2015, ACS applied materials & interfaces.

[29]  Peng Liu,et al.  Origin of colossal permittivity in (In1/2Nb1/2)TiO2via broadband dielectric spectroscopy. , 2015, Physical chemistry chemical physics : PCCP.

[30]  Fei Li,et al.  Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics , 2015, Scientific Reports.

[31]  Fei Li,et al.  Microstructure and dielectric properties of (Nb + In) co-doped rutile TiO2 ceramics , 2014 .

[32]  Chu Chen,et al.  Ga-vacancy-induced room-temperature ferromagnetic and adjusted-band-gap behaviors in GaN nanoparticles , 2014 .

[33]  D. Lu,et al.  Novel X7R BaTiO3 ceramics co-doped with La3+ and Ca2+ ions , 2014 .

[34]  Hua Chen,et al.  Electron-pinned defect-dipoles for high-performance colossal permittivity materials. , 2013, Nature materials.

[35]  Q. Liao,et al.  Doping behaviors of NiO and Nb2O5 in BaTiO3 and dielectric properties of BaTiO3-based X7R ceramics , 2012 .

[36]  J. Chu,et al.  Temperature dependence of BaTiO3 infrared dielectric properties , 2006 .

[37]  N. Chanlek,et al.  (Al3+, Nb5+) co–doped CaCu3Ti4O12: An extended approach for acceptor–donor heteroatomic substitutions to achieve high–performance giant–dielectric permittivity , 2018 .

[38]  Hui Peng,et al.  Fabrication and characterization of CdCu3Ti4O12 ceramics with colossal permittivity and low dielectric loss , 2018 .

[39]  Evon M. O. Abu-Taieh,et al.  Comparative Study , 2020, Definitions.