Towards intrinsically universal asynchronous CA

We consider asynchronous one-dimensional cellular automata (CA). It is shown that there is one with von Neumann neighborhood of radius 1 which can simulate each asynchronous one-dimensional cellular automaton. Analogous constructions are described for α-asynchronous CA (where each cell independently enters a new state with probability α, and for “neighborhood independent” asynchronous CA (where never two cells are updated simultaneously if one is in the neighborhood of the other). This also gives rise to a construction for so-called fully asynchronous CA (where in each step exactly one cell is updated).