Development of Automated Crack Propagation Analysis System

[1]  Masayuki Kamaya,et al.  Growth evaluation of multiple interacting surface cracks. Part II: Growth evaluation of parallel cracks , 2008 .

[2]  I. C. Howard,et al.  Rules for the assessment of interacting surface cracks under mode I load , 1994 .

[3]  K. Shivakumar,et al.  An equivalent domain integral method for three-dimensional mixed-mode fracture problems , 1992 .

[4]  Hans Albert Richard,et al.  Development of fatigue crack growth in real structures , 2008 .

[5]  Masanori Kikuchi,et al.  On fracture analysis using an element overlay technique , 2005 .

[6]  Robert Greif,et al.  Residual strength of aircraft panels with multiple site damage , 1994 .

[7]  Gerd Heber,et al.  Three-dimensional, parallel, finite element simulation of fatigue crack growth in a spiral bevel pinion gear , 2005 .

[8]  K. N. Shivakumar,et al.  A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies , 1988, International Journal of Fracture.

[9]  Hiroshi Okada,et al.  Stress intensity factor evaluation for large scale finite element analyses (Virtual Crack Closure-Integral Method (VCCM) for tetrahedral finite element) , 2007 .

[10]  N. Osawa,et al.  Study on Setting the Conditions of Initial Cracks for Fatigue Strength Evaluation of Welded Structures , 2002 .

[11]  宮園 昭八郎,et al.  798. 複数表面欠陥からの疲労亀裂伝播挙動評価法,(I) , 1985 .

[12]  David M. Parks,et al.  Application of domain integral methods using tetrahedral elements to the determination of stress intensity factors , 2000 .

[13]  M. Kanninen,et al.  A finite element calculation of stress intensity factors by a modified crack closure integral , 1977 .

[14]  S. Atluri,et al.  CALCULATION OF FRACTURE MECHANICS PARAMETERS FOR AN ARBITRARY THREE-DIMENSIONAL CRACK, BY THE ‘EQUIVALENT DOMAIN INTEGRAL’ METHOD , 1987 .

[15]  貴志 徳田,et al.  三次元き裂進展自動解析システムの構築 : 第1報,き裂解析システムの概要と有限要素法モデル生成 , 2010 .

[16]  J. Fish The s-version of the finite element method , 1992 .

[17]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[18]  Paul A. Wawrzynek,et al.  Advances in Simulation of Arbitrary 3D Crack Growth using FRANC3D NG , 2012 .

[19]  Hiroshi Kawai,et al.  Fully automated mixed mode crack propagation analyses based on tetrahedral finite element and VCCM (virtual crack closure-integral method) , 2010 .

[20]  Masayuki Kamaya,et al.  Growth evaluation of multiple interacting surface cracks. Part I: Experiments and simulation of coalesced crack , 2008 .

[21]  Hans Albert Richard,et al.  Development of a new software for adaptive crack growth simulations in 3D structures , 2003 .

[22]  Hiroshi Okada,et al.  四面体要素向け仮想き裂閉口積分法 (VCCM) を用いた三次元き裂進展解析のためのメッシュ生成技術 , 2008 .

[23]  Hiroshi Okada,et al.  A virtual crack closure-integral method (VCCM) to compute the energy release rates and stress intensity factors based on quadratic tetrahedral finite elements , 2008 .

[24]  Hans Albert Richard,et al.  Theoretical crack path prediction , 2005 .

[25]  Yasuyoshi Fukui,et al.  Three dimensional virtual crack closure-integral method (VCCM) with skewed and non-symmetric mesh arrangement at the crack front , 2005 .

[26]  James C. Newman,et al.  An empirical stress-intensity factor equation for the surface crack , 1981 .

[27]  Toru Ikeda,et al.  Stress intensity factor analysis of a three-dimensional interface crack between dissimilar anisotropic materials , 2007 .

[28]  S. Fawaz,et al.  Application of the virtual crack closure technique to calculate stress intensity factors for through cracks with an oblique elliptical crack front , 1998 .

[29]  Satya N. Atluri,et al.  Growth of multiple cracks and their linkup in a fuselage lap joint , 1994 .

[30]  Paul A. Wawrzynek,et al.  Methods for calculating stress intensity factors in anisotropic materials: Part I—z = 0 is a symmetric plane , 2005 .

[31]  Leslie Banks-Sills,et al.  Update: Application of the Finite Element Method to Linear Elastic Fracture Mechanics , 1991 .

[32]  Ali Fatemi,et al.  Mixed mode fatigue crack growth: A literature survey , 1996 .

[33]  B. Moran,et al.  An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions , 2002 .

[34]  J. Chang,et al.  Stress intensity factor computation along a non-planar curved crack in three dimensions , 2007 .

[35]  Hiroshi Okada,et al.  Stress intensity factor evaluation for large scale finite element analyses (virtual crack closure-integral method (VCCM) for mixed mode/complex shaped crack using tetrahedral finite element) , 2007 .

[36]  貴志 徳田,et al.  三次元き裂進展自動解析システムの構築 : 第2報,き裂進展解析システムとき裂進用有限要素法モデル生成 , 2010 .

[37]  Masanori Kikuchi,et al.  Growth prediction of two interacting surface cracks of dissimilar sizes , 2010 .