Origin of the extremely large magnetoresistance in the semimetal YSb

Electron-hole ($e\ensuremath{-}h$) compensation is a hallmark of multiband semimetals with extremely large magnetoresistance (XMR) and has been considered to be the basis for XMR. Recent spectroscopic experiments, however, reveal that YSb with nonsaturating magnetoresistance is uncompensated, questioning the $e\ensuremath{-}h$ compensation scenario for XMR. Here we demonstrate with magnetoresistivity and angle-dependent Shubnikov--de Haas (SdH) quantum oscillation measurements that YSb does have nearly perfect $e\ensuremath{-}h$ compensation, with a density ratio of $\ensuremath{\sim}0.95$ for electrons and holes. The density and mobility anisotropy of the charge carriers revealed in the SdH experiments allow us to quantitatively describe the magnetoresistance with an anisotropic multiband model that includes contributions from all Fermi pockets. We elucidate the role of compensated multibands in the occurrence of XMR by demonstrating the evolution of calculated magnetoresistances for a single band and for various combinations of electron and hole Fermi pockets.

[1]  C. Felser,et al.  Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2 , 2017, Nature Communications.

[2]  S. Zhang,et al.  Magnetotransport properties of the triply degenerate node topological semimetal tungsten carbide , 2017, 1703.03211.

[3]  Kenji Watanabe,et al.  Magnetoresistance and quantum oscillations of an electrostatically tuned semimetal-to-metal transition in ultrathin WTe 2 , 2017, 1701.08839.

[4]  J. Mitchell,et al.  Distinct Electronic Structure for the Extreme Magnetoresistance in YSb. , 2016, Physical review letters.

[5]  D. Feng,et al.  Presence of exotic electronic surface states in LaBi and LaSb , 2016, 1607.04178.

[6]  E. Bauer,et al.  Observation of Dirac-like semi-metallic phase in NdSb , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Su-Yang Xu,et al.  A new form of (unexpected) Dirac fermions in the strongly-correlated cerium monopnictides , 2016, 1604.08571.

[8]  T. Qian,et al.  Compensated Semimetal LaSb with Unsaturated Magnetoresistance. , 2016, Physical review letters.

[9]  O. Pavlosiuk,et al.  Giant magnetoresistance, three-dimensional Fermi surface and origin of resistivity plateau in YSb semimetal , 2016, Scientific Reports.

[10]  P. Guo,et al.  Magnetoresistance and Shubnikov-de Haas oscillation in YSb , 2016, 1604.05912.

[11]  P. Guo,et al.  Charge compensation in extremely large magnetoresistance materials LaSb and LaBi revealed by first-principles calculations , 2016, 1602.05061.

[12]  J. Dai,et al.  Electronic structures of transition metal dipnictides X P n 2 ( X = Ta , Nb; P n = P , As, Sb) , 2016, 1602.02344.

[13]  B. Satpati,et al.  Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS , 2016, Proceedings of the National Academy of Sciences.

[14]  Q. Gibson,et al.  Temperature−field phase diagram of extreme magnetoresistance , 2016, Proceedings of the National Academy of Sciences.

[15]  C. Felser,et al.  Observation of pseudo-two-dimensional electron transport in the rock salt-type topological semimetal LaBi , 2016, 1601.07494.

[16]  Qi Wang,et al.  Large magnetoresistance in LaBi: origin of field-induced resistivity upturn and plateau in compensated semimetals , 2016, 1601.04618.

[17]  D. Graf,et al.  π Berry phase and Zeeman splitting of Weyl semimetal TaP , 2016, Scientific Reports.

[18]  Q. Gibson,et al.  Resistivity plateau and extreme magnetoresistance in LaSb , 2015, Nature Physics.

[19]  R. Cava,et al.  Evidence for the chiral anomaly in the Dirac semimetal Na3Bi , 2015, Science.

[20]  W. Kwok,et al.  Origin of the turn-on temperature behavior in WTe2 , 2015, 1510.06976.

[21]  M. Fuhrer,et al.  Breakdown of compensation and persistence of nonsaturating magnetoresistance in gated WT e 2 thin flakes , 2015, 1509.03623.

[22]  W. Kwok,et al.  Temperature-Dependent Three-Dimensional Anisotropy of the Magnetoresistance in WTe_{2}. , 2015, Physical review letters.

[23]  Zhu-An Xu,et al.  Helicity protected ultrahigh mobility Weyl fermions in NbP , 2015, 1506.00924.

[24]  J. Mitchell,et al.  Magnetotransport of single crystalline YSb , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[25]  E. Bauer,et al.  Magnetotransport of single crystalline NbAs , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  X. Dai,et al.  Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs , 2015, 1503.01304.

[27]  Juan Liu,et al.  Quantum Oscillations, Thermoelectric Coefficients, and the Fermi Surface of Semimetallic WTe2. , 2015, Physical review letters.

[28]  C. Felser,et al.  Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP , 2015, Nature Physics.

[29]  Kamran Behnia,et al.  Angle dependence of the orbital magnetoresistance in bismuth , 2015, 1501.01584.

[30]  Yanfei Zhao,et al.  Anisotropic Fermi Surface and Quantum Limit Transport in High Mobility Three-Dimensional Dirac Semimetal Cd 3 As 2 , 2014, 1412.0330.

[31]  Q. Gibson,et al.  Large, non-saturating magnetoresistance in WTe2 , 2014, Nature.

[32]  S. Sasaki,et al.  Large linear magnetoresistance in the Dirac semimetal TlBiSSe , 2014, 1408.2183.

[33]  D. Graf,et al.  Anisotropic giant magnetoresistance in NbSb2 , 2014, Scientific Reports.

[34]  Q. Gibson,et al.  Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. , 2014, Nature materials.

[35]  Y. Maeno,et al.  Extremely large magnetoresistance in the nonmagnetic metal PdCoO2. , 2013, Physical review letters.

[36]  P. Canfield,et al.  Magnetic field effects on transport properties of PtSn4 , 2012, 1201.4091.

[37]  T. Rosenbaum,et al.  Classical and quantum routes to linear magnetoresistance. , 2008, Nature materials.

[38]  Y. Kopelevich,et al.  Universal magnetic-field-driven metal-insulator-metal transformations in graphite and bismuth , 2006, cond-mat/0601040.

[39]  D. Maslov,et al.  Metal-insulator-like behavior in semimetallic bismuth and graphite. , 2004, Physical review letters.

[40]  D. V. Khveshchenko Magnetic-field-induced insulating behavior in highly oriented pyrolitic graphite. , 2001, Physical review letters.

[41]  T. Kasuya,et al.  Normal and Anomalous Hall Effect in CeSb and CeBi , 1996 .

[42]  T. Kasuya,et al.  Acoustic de Haas-Van Alphen effect in LaSb and CeSb , 1993 .

[43]  A. Hasegawa Fermi Surface of LaSb and LaBi , 1985 .

[44]  A. Hasegawa,et al.  DE Haas-van Alphen effects on La(Sb, Bi) and Ce(Sb, Bi) , 1983 .

[45]  D. E. Soule,et al.  Study of the Shubnikov-de Haas Effect. Determination of the Fermi Surfaces in Graphite , 1964 .