The Notch/Hes1 pathway sustains NF-κB activation through CYLD repression in T cell leukemia.

[1]  M. Gerstein,et al.  Variation in Transcription Factor Binding Among Humans , 2010, Science.

[2]  D. Feldser,et al.  Requirement for NF-κB signalling in a mouse model of lung adenocarcinoma , 2009, Nature.

[3]  Ben S. Wittner,et al.  Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 , 2009, Nature.

[4]  Iannis Aifantis,et al.  CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia , 2009, Nature.

[5]  S. Ogawa,et al.  Frequent inactivation of A20 in B-cell lymphomas , 2009, Nature.

[6]  R. Dalla‐Favera,et al.  Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma , 2009, Nature.

[7]  W. Hahn,et al.  Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKKepsilon promotes cell transformation. , 2009, Molecular cell.

[8]  K. Anderson,et al.  Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. , 2009, Blood.

[9]  M. Karin,et al.  Regulation and function of NF-kappaB transcription factors in the immune system. , 2009, Annual review of immunology.

[10]  A. Bosserhoff,et al.  Down-regulation of CYLD expression by Snail promotes tumor progression in malignant melanoma , 2009, The Journal of Experimental Medicine.

[11]  O. Takeuchi,et al.  Regulation of lymphocyte progenitor survival by the proapoptotic activities of Bim and Bid , 2008, Proceedings of the National Academy of Sciences.

[12]  A. Protopopov,et al.  Oncogenesis of T-ALL and nonmalignant consequences of overexpressing intracellular NOTCH1 , 2008, The Journal of experimental medicine.

[13]  E. Raetz,et al.  Molecular pathogenesis of T-cell leukaemia and lymphoma , 2008, Nature Reviews Immunology.

[14]  Jan Delabie,et al.  Oncogenic CARD11 Mutations in Human Diffuse Large B Cell Lymphoma , 2008, Science.

[15]  L. Staudt,et al.  Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. , 2007, Cancer cell.

[16]  L. Bruhn,et al.  Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. , 2007, Cancer cell.

[17]  Rob Pieters,et al.  FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors , 2007, The Journal of experimental medicine.

[18]  L. Fitzpatrick,et al.  Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T cell responses , 2007, The Journal of experimental medicine.

[19]  Malay Mandal,et al.  Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. , 2007, Nature medicine.

[20]  Malay Mandal,et al.  Targeting the NF-κB signaling pathway in Notch1-induced T-cell leukemia , 2007, Nature Medicine.

[21]  X. Xin The Notch-Hes Pathway in Mammalian Neural Development , 2007 .

[22]  J. Aster,et al.  Identification of a Conserved Negative Regulatory Sequence That Influences the Leukemogenic Activity of NOTCH1 , 2006, Molecular and Cellular Biology.

[23]  S. Larson,et al.  Tumor-specific in vivo transfection with HSV-1 thymidine kinase gene using a Sindbis viral vector as a basis for prodrug ganciclovir activation and PET. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[24]  M. Karin Nuclear factor-κB in cancer development and progression , 2006, Nature.

[25]  Shao-Cong Sun,et al.  Regulation of T cell development by the deubiquitinating enzyme CYLD , 2006, Nature Immunology.

[26]  G. Sonenshein,et al.  Notch1 augments NF‐κB activity by facilitating its nuclear retention , 2006 .

[27]  M. Karin Nuclear factor-kappaB in cancer development and progression. , 2006, Nature.

[28]  G. Sonenshein,et al.  Notch1 augments NF-kappaB activity by facilitating its nuclear retention. , 2006, The EMBO journal.

[29]  Malay Mandal,et al.  The BCL2A1 gene as a pre–T cell receptor–induced regulator of thymocyte survival , 2005, The Journal of experimental medicine.

[30]  Somasekar Seshagiri,et al.  De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling , 2004, Nature.

[31]  G. Courtois,et al.  Mature T cells depend on signaling through the IKK complex. , 2003, Immunity.

[32]  René Bernards,et al.  Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB , 2003, Nature.

[33]  A. Ashworth,et al.  CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members , 2003, Nature.

[34]  Larry Kedes,et al.  HES and HERP families: Multiple effectors of the notch signaling pathway , 2003, Journal of cellular physiology.

[35]  Yoav Benjamini,et al.  Identifying differentially expressed genes using false discovery rate controlling procedures , 2003, Bioinform..

[36]  L. Espinosa,et al.  IκBα and p65 Regulate the Cytoplasmic Shuttling of Nuclear Corepressors: Cross-talk between Notch and NFκB Pathways , 2003 .

[37]  I. Screpanti,et al.  Notch, a unifying target in T-cell acute lymphoblastic leukemia? , 2003, Trends in molecular medicine.

[38]  L. Espinosa,et al.  IkappaBalpha and p65 regulate the cytoplasmic shuttling of nuclear corepressors: cross-talk between Notch and NFkappaB pathways. , 2003, Molecular biology of the cell.

[39]  A. Hoffmann,et al.  The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. , 2002, Science.

[40]  Ulrich Siebenlist,et al.  Constitutive Nuclear Factor κB Activity Is Required for Survival of Activated B Cell–like Diffuse Large B Cell Lymphoma Cells , 2001, The Journal of experimental medicine.

[41]  L. Scorrano,et al.  Constitutive pre-TCR signaling promotes differentiation through Ca2+ mobilization and activation of NF-κB and NFAT , 2001, Nature Immunology.

[42]  S. Ghosh,et al.  Selective inhibition of NF-κB activation by a peptide that blocks the interaction of NEMO with the IκB kinase complex , 2000 .

[43]  Klaus Rajewsky,et al.  NEMO/IKKγ-Deficient Mice Model Incontinentia Pigmenti , 2000 .

[44]  A. Ashworth,et al.  Identification of the familial cylindromatosis tumour-suppressor gene , 2000, Nature Genetics.

[45]  Raphael Kopan,et al.  A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. , 2000, Molecular cell.

[46]  J. Pober,et al.  Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. , 2000, Science.

[47]  G. Courtois,et al.  NEMO/IKK gamma-deficient mice model incontinentia pigmenti. , 2000, Molecular cell.

[48]  M. Caudy,et al.  Regulation of hippocampal neuronal differentiation by the basic helix‐loop‐helix transcription factors HES‐1 and MASH‐1 , 1999, Journal of neuroscience research.

[49]  J. Ninomiya-Tsuji,et al.  The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signalling pathway , 1999, Nature.

[50]  S. Minoguchi,et al.  Delta-induced Notch Signaling Mediated by RBP-J Inhibits MyoD Expression and Myogenesis* , 1999, The Journal of Biological Chemistry.

[51]  A. Bigas,et al.  Notch1 and Notch2 Inhibit Myeloid Differentiation in Response to Different Cytokines , 1998, Molecular and Cellular Biology.

[52]  C. Leow,et al.  Notch receptors, partners and regulators: from conserved domains to powerful functions. , 1998, Current topics in microbiology and immunology.

[53]  M. Cleary,et al.  Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX–ENL , 1997, The EMBO journal.

[54]  D. Thomas,et al.  Nuclear localization of I kappa B alpha promotes active transport of NF-kappa B from the nucleus to the cytoplasm. , 1997, Journal of cell science.

[55]  D. Thomas,et al.  Identification of lysine residues required for signal-induced ubiquitination and degradation of I kappa B-alpha in vivo. , 1996, Oncogene.

[56]  Christel Brou,et al.  Signalling downstream of activated mammalian Notch , 1995, Nature.

[57]  M Aguet,et al.  Inducible gene targeting in mice , 1995, Science.