Algebraic aspects of increasing subsequences

We present a number of results relating partial Cauchy-Littlewood sums, integrals over the compact classical groups, and increasing subsequences of permutations. These include: integral formulae for the distribution of the longest increasing subsequence of a random involution with constrained number of fixed points; new formulae for partial Cauchy-Littlewood sums, as well as new proofs of old formulae; relations of these expressions to orthogonal polynomials on the unit circle; and explicit bases for invariant spaces of the classical groups, together with appropriate generalizations of the straightening algorithm.

[1]  Eric M. Rains,et al.  Increasing Subsequences and the Classical Groups , 1998, Electron. J. Comb..

[2]  Kurt Johansson,et al.  ON RANDOM MATRICES FROM THE COMPACT CLASSICAL GROUPS , 1997 .

[3]  Jeffrey B. Remmel The combinatorics of (k,`)-Hook Schur functions , 1983 .

[4]  Limiting Distributions for a Polynuclear Growth Model with External Sources , 2000, math/0003130.

[5]  Dennis E. White,et al.  A Schensted Algorithm for Rim Hook Tableaux , 1985, J. Comb. Theory, Ser. A.

[6]  Carol Bult,et al.  PERMUTATIONS , 1994 .

[7]  Random vicious walks and random matrices , 2000, math/0001022.

[8]  Craig A. Tracy,et al.  Correlation Functions, Cluster Functions, and Spacing Distributions for Random Matrices , 1998 .

[9]  Gian-Carlo Rota,et al.  Invariant theory and superalgebras , 1987 .

[10]  P. Forrester Exact calculation of the distribution of every second eigenvalue in classical random matrix ensembles with orthogonal symmetry , 1999 .

[11]  P. Diaconis,et al.  On the eigenvalues of random matrices , 1994, Journal of Applied Probability.

[12]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[13]  Marc van Leeuwen,et al.  The Robinson-Schensted and Schützenberger algorithms, an elementary approach , 1995, Electron. J. Comb..

[14]  Richard Brauer,et al.  On Algebras Which are Connected with the Semisimple Continuous Groups , 1937 .

[15]  Masato Wakayama,et al.  Applications of minor-summation formula I. Littlewood's formulas , 1996 .

[16]  Curtis Greene,et al.  An Extension of Schensted's Theorem , 1974 .

[17]  J. Thibon,et al.  The Robinson-Schensted correspondence, crystal bases, and the quantum straightening at q = 0 , 1995 .

[18]  J. B. Remmel,et al.  Hook flag characters and their combinatorics , 1985 .

[19]  Soichi Okada,et al.  Applications of Minor Summation Formulas to Rectangular-Shaped Representations of Classical Groups , 1998 .

[20]  Martin Rötteler,et al.  Computing local invariants of qubit systems , 1998 .

[21]  G. Rota,et al.  Introduction to Invariant Theory in Superalgebras , 1990 .

[22]  Masato Wakayama,et al.  Minor summation formula of Pfaffians , 1995 .

[23]  Donald E. Knuth,et al.  Sorting and Searching , 1973 .

[24]  Donald E. Knuth,et al.  PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .

[25]  Basil Gordon,et al.  Notes on plane partitions VI , 1979, Discret. Math..

[26]  A. Regev The representations of Sn and explicit identities for P. I. algebras , 1978 .

[27]  Basil Gordon,et al.  Notes on plane partitions. I , 1968 .

[28]  Emden R. Gansner,et al.  MATRIX CORRESPONDENCES OF PLANE PARTITIONS , 1981 .

[29]  M.A.A. vanLeeuwen The Robinson-Schensted and Schützenberger algorithms, an elementary approach. The Foata Festschrift , 1996 .

[30]  John R. Stembridge,et al.  Nonintersecting Paths, Pfaffians, and Plane Partitions , 1990 .

[31]  C. Krattenthaler Identities for Classical Group Characters of Nearly Rectangular Shape , 1998, math/9808118.

[32]  Ira M. Gessel,et al.  Symmetric functions and P-recursiveness , 1990, J. Comb. Theory, Ser. A.

[33]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[34]  E. Thoma Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe , 1964 .

[35]  Ian P. Goulden,et al.  A linear operator for symmetric functions and tableaux in a strip with given trace , 1992, Discret. Math..

[36]  William H. Burge,et al.  Four Correspondences Between Graphs and Generalized Young Tableaux , 1974, J. Comb. Theory A.

[37]  Amitai Regev,et al.  Hook young diagrams with applications to combinatorics and to representations of Lie superalgebras , 1987 .

[38]  P. Forrester,et al.  Interrelationships between orthogonal, unitary and symplectic matrix ensembles , 1999, solv-int/9907008.

[39]  de Ng Dick Bruijn On some multiple integrals involving determinants , 1955 .

[40]  Michio Jimbo,et al.  A q-analogue of U(g[(N+1)), Hecke algebra, and the Yang-Baxter equation , 1986 .

[41]  Kiem-Phong Vo,et al.  Tableaux and Matrix Correspondences , 1983, J. Comb. Theory A.

[42]  G. Olshanski,et al.  Asymptotics of Plancherel measures for symmetric groups , 1999, math/9905032.

[44]  J. Baik,et al.  The asymptotics of monotone subsequences of involutions , 1999, math/9905084.