PARylated PDHE1α generates acetyl-CoA for local chromatin acetylation and DNA damage repair

[1]  Boyang Fan,et al.  PARP molecular functions and applications of PARP inhibitors in cancer treatment , 2023, Genome Instability & Disease.

[2]  Wei-Guo Zhu,et al.  Cytoplasmic SIRT6-mediated ACSL5 deacetylation impedes nonalcoholic fatty liver disease by facilitating hepatic fatty acid oxidation. , 2022, Molecular cell.

[3]  Jimmy P. Xu,et al.  Quantitative subcellular acyl-CoA analysis reveals distinct nuclear metabolism and isoleucine-dependent histone propionylation. , 2021, Molecular cell.

[4]  Wei-Guo Zhu,et al.  Histone lysine modifying enzymes and their critical roles in DNA double-strand break repair. , 2021, DNA repair.

[5]  J. Workman,et al.  The SESAME complex regulates cell senescence through the generation of acetyl-CoA , 2021, Nature Metabolism.

[6]  Huafeng Zhang,et al.  Metabolic reprogramming and epigenetic modifications on the path to cancer , 2021, Protein & Cell.

[7]  A. Matouschek,et al.  Poly(ADP-ribose) binding and macroH2A mediate recruitment and functions of KDM5A at DNA lesions , 2021, The Journal of cell biology.

[8]  Xiaochun Yu,et al.  ADP‐ribosylation of histone variant H2AX promotes base excision repair , 2020, The EMBO journal.

[9]  B. Pasche,et al.  Phosphorylation of PDHA by AMPK Drives TCA Cycle to Promote Cancer Metastasis , 2020, Molecular Cell.

[10]  R. Campbell,et al.  High-Performance Intensiometric Direct- and Inverse-Response Genetically Encoded Biosensors for Citrate , 2020, ACS central science.

[11]  Y. Xiong,et al.  Tumour metabolites hinder DNA repair , 2020, Nature.

[12]  B. Shuch,et al.  Oncometabolites suppress DNA repair by disrupting local chromatin signaling , 2020, Nature.

[13]  K. Wellen,et al.  Compartmentalised acyl-CoA metabolism and roles in chromatin regulation , 2020, Molecular metabolism.

[14]  Wei-Guo Zhu,et al.  SIRT6 coordinates with CHD4 to promote chromatin relaxation and DNA repair , 2020, Nucleic acids research.

[15]  Da-Qiang Li,et al.  MORC2 regulates DNA damage response through a PARP1-dependent pathway , 2019, Nucleic acids research.

[16]  Jae Jin Kim,et al.  Preserving genome integrity and function: the DNA damage response and histone modifications , 2019, Critical reviews in biochemistry and molecular biology.

[17]  H. Lung,et al.  mTORC2-mediated PDHE1α nuclear translocation links EBV-LMP1 reprogrammed glucose metabolism to cancer metastasis in nasopharyngeal carcinoma , 2019, Oncogene.

[18]  B. Garcia,et al.  Acetate Production from Glucose and Coupling to Mitochondrial Metabolism in Mammals , 2018, Cell.

[19]  M. Skrzypczak,et al.  Comprehensive Mapping of Histone Modifications at DNA Double-Strand Breaks Deciphers Repair Pathway Chromatin Signatures , 2018, Molecular cell.

[20]  T. Helleday,et al.  Targeting PFKFB3 radiosensitizes cancer cells and suppresses homologous recombination , 2018, Nature Communications.

[21]  Wei-Guo Zhu,et al.  Destabilization of linker histone H1.2 is essential for ATM activation and DNA damage repair , 2018, Cell Research.

[22]  Shelly R. Peyton,et al.  Acetyl-CoA promotes glioblastoma cell adhesion and migration through Ca2+–NFAT signaling , 2018, Genes & development.

[23]  A. Cavalli,et al.  Compartmentalized activities of the pyruvate dehydrogenase complex sustain lipogenesis in prostate cancer , 2017, Nature Genetics.

[24]  P. Stacpoole Therapeutic Targeting of the Pyruvate Dehydrogenase Complex/Pyruvate Dehydrogenase Kinase (PDC/PDK) Axis in Cancer , 2017, Journal of the National Cancer Institute.

[25]  Zhimin Lu,et al.  Local histone acetylation by ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy , 2017, Autophagy.

[26]  S. Sivanand,et al.  Nuclear Acetyl-CoA Production by ACLY Promotes Homologous Recombination. , 2017, Molecular cell.

[27]  G. Rao,et al.  Nucleus-Translocated ACSS2 Promotes Gene Transcription for Lysosomal Biogenesis and Autophagy. , 2017, Molecular cell.

[28]  C. Barba,et al.  Diagnostic Targeted Resequencing in 349 Patients with Drug‐Resistant Pediatric Epilepsies Identifies Causative Mutations in 30 Different Genes , 2017, Human mutation.

[29]  F. Sotgia,et al.  Cancer metabolism: a therapeutic perspective , 2017, Nature Reviews Clinical Oncology.

[30]  Ziying Liu,et al.  PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes , 2017, Genes & development.

[31]  M. Sharpley,et al.  Nuclear Localization of Mitochondrial TCA Cycle Enzymes as a Critical Step in Mammalian Zygotic Genome Activation , 2017, Cell.

[32]  K. Wellen,et al.  Metabolic control of epigenetics in cancer , 2016, Nature Reviews Cancer.

[33]  K. Miller,et al.  Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer , 2016, PLoS genetics.

[34]  I. Matic,et al.  Serine is a new target residue for endogenous ADP-ribosylation on histones , 2016, Nature chemical biology.

[35]  Yonghao Yu,et al.  Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation , 2016, Science.

[36]  R. Mostoslavsky,et al.  Interplay between Metabolism and Epigenetics: A Nuclear Adaptation to Environmental Changes. , 2016, Molecular cell.

[37]  Xiaochun Yu,et al.  Functions of PARylation in DNA Damage Repair Pathways , 2016, Genom. Proteom. Bioinform..

[38]  Steven H. Lin,et al.  PARP Inhibition Suppresses Growth of EGFR-Mutant Cancers by Targeting Nuclear PKM2. , 2016, Cell reports.

[39]  A. Whitmarsh,et al.  Mitochondrial Proteins Moonlighting in the Nucleus. , 2015, Trends in biochemical sciences.

[40]  Xiaochun Yu,et al.  ADP-ribosyltransferases and poly ADP-ribosylation. , 2015, Current protein & peptide science.

[41]  G. Peng,et al.  Local generation of fumarate promotes DNA repair through inhibition of histone H3 demethylation , 2015, Nature Cell Biology.

[42]  Lorenzo Galluzzi,et al.  Acetyl coenzyme A: a central metabolite and second messenger. , 2015, Cell metabolism.

[43]  E. Michelakis,et al.  A Nuclear Pyruvate Dehydrogenase Complex Is Important for the Generation of Acetyl-CoA and Histone Acetylation , 2014, Cell.

[44]  Neville E. Sanjana,et al.  Improved vectors and genome-wide libraries for CRISPR screening , 2014, Nature Methods.

[45]  S. Jackson,et al.  Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks , 2014, Nature Structural &Molecular Biology.

[46]  I. Ahel,et al.  Poly(ADP-ribosyl)ation in regulation of chromatin structure and the DNA damage response , 2014, Chromosoma.

[47]  A. D’Andrea,et al.  Chromatin Remodeling at DNA Double-Strand Breaks , 2013, Cell.

[48]  B. Price,et al.  Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair. , 2012, Molecular cell.

[49]  G. Almouzni,et al.  Prime, repair, restore: the active role of chromatin in the DNA damage response. , 2012, Molecular cell.

[50]  Xueliang Gao,et al.  Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. , 2012, Molecular cell.

[51]  M. V. Heiden,et al.  Targeting cancer metabolism: a therapeutic window opens , 2011, Nature Reviews Drug Discovery.

[52]  S. Messner,et al.  Histone ADP-ribosylation in DNA repair, replication and transcription. , 2011, Trends in cell biology.

[53]  Jason W. Locasale,et al.  Metabolic Regulation of Protein N-Alpha-Acetylation by Bcl-xL Promotes Cell Survival , 2011, Cell.

[54]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[55]  W. Kraus,et al.  Small molecules, big effects: a role for chromatin-localized metabolite biosynthesis in gene regulation. , 2011, Molecular cell.

[56]  S. Elledge,et al.  The DNA damage response: making it safe to play with knives. , 2010, Molecular cell.

[57]  Xiaofeng Jiang,et al.  The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair , 2010, The Journal of cell biology.

[58]  W. Kraus,et al.  The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. , 2010, Molecular cell.

[59]  Imen Lassadi,et al.  High‐resolution profiling of γH2AX around DNA double strand breaks in the mammalian genome , 2010, The EMBO journal.

[60]  J. Bartek,et al.  The DNA-damage response in human biology and disease , 2009, Nature.

[61]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[62]  Wei-Guo Zhu,et al.  The comet assay: a sensitive method for detecting DNA damage in individual cells. , 2009, Methods.

[63]  Robert E. Kingston,et al.  Purification of Proteins Associated with Specific Genomic Loci , 2009, Cell.

[64]  Stephen C. West,et al.  Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins , 2008, Nature.

[65]  M. Pazin,et al.  Histone H4-K16 Acetylation Controls Chromatin Structure and Protein Interactions , 2006, Science.

[66]  Chi V Dang,et al.  Multifaceted roles of glycolytic enzymes. , 2005, Trends in biochemical sciences.

[67]  S. Jackson,et al.  Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. , 2004, Molecular cell.

[68]  S. Sivanand,et al.  Spatiotemporal Control of Acetyl-CoA Metabolism in Chromatin Regulation. , 2018, Trends in biochemical sciences.

[69]  Johan Auwerx,et al.  Protein acetylation in metabolism — metabolites and cofactors , 2016, Nature Reviews Endocrinology.

[70]  A. D’Andrea,et al.  Repair Pathway Choices and Consequences at the Double-Strand Break. , 2016, Trends in cell biology.

[71]  Z. Herceg,et al.  Histone acetylation by Trrap–Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks , 2006, Nature Cell Biology.

[72]  K. Bomsztyk,et al.  Protocol for the fast chromatin immunoprecipitation (ChIP) method , 2006, Nature Protocols.

[73]  D. Buxton,et al.  Regulation of the pyruvate dehydrogenase multienzyme complex. , 1993, Annual review of nutrition.