A correction technique for the dispersive effects of mass lumping for transport problems

Abstract This paper addresses the well-known dispersion effect that mass lumping induces when solving transport-like equations. A simple anti-dispersion technique based on the lumped mass matrix is proposed. The method does not require any non-trivial matrix inversion and has the same anti-dispersive effects as the consistent mass matrix. A novel quasi-lumping technique for P 2 finite elements is introduced. Higher-order extensions of the method are also discussed.

[1]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[2]  Vassilios A. Dougalis,et al.  The Effect of Quadrature Errors on Finite Element Approximations for Second Order Hyperbolic Equations , 1976 .

[3]  Jean-Luc Guermond,et al.  Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..

[4]  Jean E. Roberts,et al.  Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation , 2000, SIAM J. Numer. Anal..

[5]  G. Cohen,et al.  Higher-Order Numerical Methods for Transient Wave Equations , 2001 .

[6]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[7]  Miguel A. Fernández,et al.  Explicit Runge-Kutta Schemes and Finite Elements with Symmetric Stabilization for First-Order Linear PDE Systems , 2010, SIAM J. Numer. Anal..

[8]  Mark A. Taylor,et al.  An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..

[9]  Tim Warburton,et al.  An explicit construction of interpolation nodes on the simplex , 2007 .

[10]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[11]  M. Christon The influence of the mass matrix on the dispersive nature of the semi-discrete, second-order wave equation , 1999 .

[12]  Jan S. Hesthaven,et al.  A pseudo-spectral scheme for the incompressible Navier-Stokes equations using unstructured nodal elements , 2000 .

[13]  Gary Cohen Higher-Order Numerical Methods for Transient Wave Equations , 2001 .

[14]  R. Sani,et al.  Incompressible Flow and the Finite Element Method, Volume 1, Advection-Diffusion and Isothermal Laminar Flow , 1998 .

[15]  Stéphanie Salmon,et al.  Arbitrary High-Order Finite Element Schemes and High-Order Mass Lumping , 2007, Int. J. Appl. Math. Comput. Sci..

[16]  Thomas Eugene Voth,et al.  Generalized Fourier analyses of the advection–diffusion equation—Part I: one‐dimensional domains , 2004 .

[17]  W. A. Mulder,et al.  Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation , 1999 .

[18]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[19]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[20]  Isaac Fried,et al.  Numerical integration in the finite element method , 1974 .

[21]  By F. Ham Improved scalar transport for unstructured finite volume methods using simplex superposition , 2008 .

[22]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[23]  Francis X. Giraldo,et al.  A diagonal-mass-matrix triangular-spectral-element method based on cubature points , 2007 .