Semiparametric Estimation of a CES Demand System with Observed and Unobserved Product Characteristics

We develop a characteristics based demand estimation framework for the Marshallian demand system obtained by solving a budget-constrained constant elasticity of substitution (CES) utility maximization problem. From our Marshallian CES demand system, we derive the same market share equation of Berry (1994); Berry, Levinsohn, and Pakes (1995)'s characteristics based logit demand system. Our CES demand estimation framework can accommodate zero predicted and observed market shares by conceptually separating the whether-to-buy decision and how-much-to-buy decision. Furthermore, the estimator we suggest allows a tractable semiparametric estimation strategy that is flexible regarding the distribution of unobservable product characteristics. We apply our framework to scanner data on cola sales, where we show estimated demand curves can be upward sloping if zero market shares are not accommodated properly.

[1]  Joonhwi Joo,et al.  Are Generalized Extreme Value Class Discrete Choice Demand Models Rationalizable as a Representative Consumer's Behavior? , 2017 .

[2]  Sanghak Lee,et al.  Price Promotions in Choice Models , 2013, Mark. Sci..

[3]  Bart J. Bronnenberg The Provision of Convenience and Variety by the Market , 2014 .

[4]  Sanghak Lee,et al.  Modeling Indivisible Demand , 2012, Mark. Sci..

[5]  Sanghak Lee,et al.  A Direct Utility Model for Asymmetric Complements , 2013, Mark. Sci..

[6]  Xiaoxia Shi,et al.  Estimating demand for differentiated products with error in market shares , 2013 .

[7]  Neel Sundaresan,et al.  Sales Taxes and Internet Commerce , 2012 .

[8]  Beibei Li,et al.  Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowd-Sourced Content , 2011, Mark. Sci..

[9]  Pradeep Chintagunta,et al.  Structural Workshop Paper - Discrete-Choice Models of Consumer Demand in Marketing , 2011, Mark. Sci..

[10]  Philip A. Haile,et al.  Connected Substitutes and Invertibility of Demand , 2011 .

[11]  David E. Weinstein,et al.  Goods Prices and Availability in Cities , 2011 .

[12]  M. Waugh,et al.  International Trade and Income Differences , 2010 .

[13]  Aviv Nevo,et al.  Empirical Models of Consumer Behavior , 2010 .

[14]  Steven Berry,et al.  Identification in Differentiated Products Markets Using Market Level Data , 2010 .

[15]  C. Rothe Semiparametric estimation of binary response models with endogenous regressors , 2009 .

[16]  Bart J. Bronnenberg,et al.  Estimating Demand Heterogeneity Using Aggregated Data: An Application to the Frozen Pizza Category , 2009, Mark. Sci..

[17]  Avi Goldfarb,et al.  Measuring Brand Value in an Equilibrium Framework , 2007, Mark. Sci..

[18]  Whitney K. Newey,et al.  Two-Step Series Estimation of Sample Selection Models , 2009 .

[19]  John D. C. Little,et al.  A Logit Model of Brand Choice Calibrated on Scanner Data , 2011, Mark. Sci..

[20]  Hernán A. Bruno,et al.  Research Note - Structural Demand Estimation with Varying Product Availability , 2008, Mark. Sci..

[21]  Kenneth C. Wilbur A Two-Sided, Empirical Model of Television Advertising and Viewing Markets , 2008, Mark. Sci..

[22]  C. Bhat The multiple discrete-continuous extreme value (MDCEV) model : Role of utility function parameters, identification considerations, and model extensions , 2008 .

[23]  J. Powell,et al.  Censored regression quantiles with endogenous regressors , 2007 .

[24]  Pradeep K. Chintagunta,et al.  A Discrete–Continuous Model for Multicategory Purchase Behavior of Households , 2007 .

[25]  Steven Berry,et al.  The Pure Characteristics Demand Model , 2007 .

[26]  Nitin Mehta Investigating Consumers' Purchase Incidence and Brand Choice Decisions Across Multiple Product Categories: A Theoretical and Empirical Analysis , 2007 .

[27]  E. Helpman,et al.  ESTIMATING TRADE FLOWS : TRADING PARTNERS AND TRADING VOLUMES Elhanan Helpman , 2007 .

[28]  Edward E. Leamer,et al.  Econometric Tools for Analyzing Market Outcomes , 2007 .

[29]  Dipak C. Jain,et al.  Consumer Preferences and Product-Line Pricing Strategies: An Empirical Analysis , 2006 .

[30]  Peter E. Rossi,et al.  Product Attributes and Models of Multiple Discreteness , 2006 .

[31]  Silvana Tenreyro,et al.  The Log of Gravity , 2004, The Review of Economics and Statistics.

[32]  Günter J. Hitsch An Empirical Model of Optimal Dynamic Product Launch and Exit Under Demand Uncertainty , 2006 .

[33]  Pradeep Chintagunta,et al.  Beyond the Endogeneity Bias: The Effect of Unmeasured Brand Characteristics on Household-Level Brand Choice Models , 2005, Manag. Sci..

[34]  Pradeep K. Chintagunta,et al.  Strategic Pricing and Detailing Behavior in International Markets , 2005 .

[35]  Greg M. Allenby,et al.  A Choice Model with Conjunctive, Disjunctive, and Compensatory Screening Rules , 2004 .

[36]  Harikesh S. Nair,et al.  Accounting for Primary and Secondary Demand Effects with Aggregate Data , 2004 .

[37]  J. Powell,et al.  c ○ 2004 The Review of Economic Studies Limited Endogeneity in Semiparametric Binary Response Models , 2001 .

[38]  David E. Weinstein,et al.  Globalization and the Gains from Variety , 2004 .

[39]  Thomas S. Shively,et al.  A Choice Model for Packaged Goods: Dealing with Discrete Quantities and Quantity Discounts , 2004 .

[40]  Jean-Pierre Dubé Multiple Discreteness and Product Differentiation: Demand for Carbonated Soft Drinks , 2004 .

[41]  F. Wolak,et al.  Structural Econometric Modeling: Rationales and Examples from Industrial Organization , 2004 .

[42]  Stephen Portnoy,et al.  Censored Regression Quantiles , 2003 .

[43]  K. Srinivasan,et al.  Price Uncertainty and Consumer Search: A Structural Model of Consideration Set Formation , 2003 .

[44]  Pradeep Chintagunta,et al.  Investigating the Effects of Store-Brand Introduction on Retailer Demand and Pricing Behavior , 2002, Manag. Sci..

[45]  Peter E. Rossi,et al.  Modeling Consumer Demand for Variety , 2002 .

[46]  Amil Petrin Quantifying the Benefits of New Products: The Case of the Minivan , 2001, Journal of Political Economy.

[47]  Richard Blundell,et al.  Endogeneity in Nonparametric and Semiparametric Regression Models , 2022 .

[48]  Pradeep K. Chintagunta,et al.  Endogeneity and Heterogeneity in a Probit Demand Model: Estimation Using Aggregate Data , 2001 .

[49]  K. Sudhir,et al.  Competitive Pricing Behavior in the Auto Market: A Structural Analysis , 2001 .

[50]  James L. Powell,et al.  Nonlinear statistical modeling: Semiparametric estimation of censored selection models , 2001 .

[51]  Aviv Nevo A Practitioner's Guide to Estimation of Random‐Coefficients Logit Models of Demand , 2000 .

[52]  J. M. Villas-Boas,et al.  Endogeneity in Brand Choice Models , 1999 .

[53]  David Besanko,et al.  Logit Demand Estimation Under Competitive Pricing Behavior: An Equilibrium Framework , 1998 .

[54]  Aviv Nevo Measuring Market Power in the Ready-to-Eat Cereal Industry , 1998 .

[55]  Bo E. Honoré,et al.  Estimation of Type 3 Tobit models using symmetric trimming and pairwise comparisons , 1997 .

[56]  Rajeev Kohli,et al.  Consideration Sets in Conjoint Analysis , 1996 .

[57]  Estimating Demand for Differentiated Products , 1996 .

[58]  F. Verboven The nested logit model and representative consumer theory , 1996 .

[59]  Steven T. Berry,et al.  Automobile Prices in Market Equilibrium , 1995 .

[60]  M. Ben-Akiva,et al.  Discrete choice models with latent choice sets , 1995 .

[61]  Simon P. Anderson,et al.  Discrete Choice Theory of Product Differentiation , 1995 .

[62]  Steven T. Berry Estimating Discrete-Choice Models of Product Differentiation , 1994 .

[63]  R. Feenstra New Product Varieties and the Measurement of International Prices , 1994 .

[64]  J. Powell,et al.  Semiparametric estimation of censored selection models with a nonparametric selection mechanism , 1993 .

[65]  Pradeep K. Chintagunta,et al.  Investigating Purchase Incidence, Brand Choice and Purchase Quantity Decisions of Households , 1993 .

[66]  R. Spady,et al.  AN EFFICIENT SEMIPARAMETRIC ESTIMATOR FOR BINARY RESPONSE MODELS , 1993 .

[67]  John Roberts,et al.  Development and Testing of a Model of Consideration Set Composition , 1991 .

[68]  J. Chiang A Simultaneous Approach to the Whether, What and How Much to Buy Questions , 1991 .

[69]  Jacques-François Thisse,et al.  A representative consumer theory of the logit model , 1988 .

[70]  Simon P. Anderson,et al.  The CES is a discrete choice model , 1987 .

[71]  J. Powell,et al.  Censored regression quantiles , 1986 .

[72]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[73]  J. Powell,et al.  Least absolute deviations estimation for the censored regression model , 1984 .

[74]  W. Hanemann Discrete-Continuous Models of Consumer Demand , 1984 .

[75]  Jeffrey A. Dubin,et al.  An Econometric Analysis of Residential Electric Appliance Holdings and Consumption , 1984 .

[76]  J. Muellbauer,et al.  An Almost Ideal Demand System , 1980 .

[77]  P. Krugman Scale Economies, Product Differentiation, and the Pattern of Trade , 1980 .

[78]  James E. Anderson A Theoretical Foundation for the Gravity Equation , 1979 .

[79]  J. Heckman Sample selection bias as a specification error , 1979 .

[80]  Daniel McFadden,et al.  Modelling the Choice of Residential Location , 1977 .

[81]  M. Spence Product Selection, Fixed Costs, and Monopolistic Competition , 1976 .

[82]  A. Dixit,et al.  Monopolistic competition and optimum product diversity , 1977 .

[83]  D. Jorgenson,et al.  Transcendental Logarithmic Utility Functions , 1975 .

[84]  D. McFadden Conditional logit analysis of qualitative choice behavior , 1972 .

[85]  K. Lancaster A New Approach to Consumer Theory , 1966, Journal of Political Economy.

[86]  Econometrica Supplementary Material SUPPLEMENT TO “IMPROVING THE NUMERICAL PERFORMANCE OF STATIC AND DYNAMIC AGGREGATE DISCRETE CHOICE RANDOM COEFFICIENTS DEMAND ESTIMATION” , 2022 .