Automatic Near-Body Domain Decomposition Using the Eikonal Equation

The purpose of this research is to generate high-aspect-ratiocellsfor structuredgridsinthevicinity ofboundariesforwalldominatedphenomenasuchasviscouslayersinaerodynamicapplications.Whensuchdomainsarediscretizedforcomplexgeometries,itisimportantthatthegridfitstheboundarieswell,andthisbecomesevenmoredifficulttoachievewithstronglycurvedboundaries.Domaindecompo-sitionsimplifiesthisproblemby subdividingthedomainintomultipleblocksandmakesthetaskofmeshingcomplexgeometriesmoremanageable.Therearemanybenefitstousingamulti-block strategy.Itispossibletocon-trol the orthogonalityand grid quality more preciselywithin smallerblocks, anditallowsdifferentmeshtypesandgenerationtechniquesineachindividualblock.Also,parallelalgorithmscanbeembeddedinthemeshgenerationalgorithm,wheredifferentblockscanbeassignedtodifferentprocessors,thusgreatlyimprovingtheefficiencyoftheprocess.Thepresentpaperintroducesanapproachtoautomaticallydecomposeanarbi-trarycomplexdomainintoface-matchingmulti-blocksemanatingfromthebound-aries.Thesubdivisionprocedureisbasedonthecreationofoffsetsurfaceswhichcloselyfittheir geometries instead of arbitrary planes or surfaces. Thisfitting isachievedthroughaweaksolutionoftheOffsetDistanceFunction,whichisavaria-tionoftheEikonalequation.Computingthenormaldirectionsinthismannerinsuresthattheydonotcross,andtheresultingpropagationavoidsself-intersectionswhicharisefromdirectconstructionmethods.Thusthismethodcanbeappliedonanarbitrarycomplexdomain,i.e.,acon-cave,oraconvexshape, it mayhave sharp corners, or even bemulti-connected.Inaddition,theproposedmethodtransportstheoriginalparameterizationtothepropagated surface whichallows rigorousmatching of block faces. The geometricand topological configurations are thus well defined whichallows to increasetheautomationlevelwithoutuserintervention.

[1]  Nicholas M. Patrikalakis,et al.  Modifying free-formed NURBS curves and surfaces for offsetting without local self-intersection , 2004, Comput. Aided Des..

[2]  J. Q. Cordova Towards a theory of automated elliptic mesh generation , 1992 .

[3]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[4]  Wayne Tiller,et al.  Offsets of Two-Dimensional Profiles , 1984, IEEE Computer Graphics and Applications.

[5]  Xiaolin Li,et al.  Robust Computational Algorithms for Dynamic Interface Tracking in Three Dimensions , 1999, SIAM J. Sci. Comput..

[6]  J. Bonet,et al.  An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems , 1991 .

[7]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[8]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[9]  Alfred M. Bruckstein,et al.  Shape offsets via level sets , 1993, Comput. Aided Des..

[10]  F. Guibault,et al.  A Parameterization Transporting Surface Offset Construction Method Based on the Eikonal Equation , 2005 .

[11]  Sang C. Park,et al.  Uncut free pocketing tool-paths generation using pair-wise offset algorithm , 2001, Comput. Aided Des..

[12]  Alla Sheffer,et al.  Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening , 2001, Engineering with Computers.

[13]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[14]  Kunwoo Lee,et al.  Automatic multiblock decomposition using hypercube++ for grid generation , 1998 .

[15]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Malgorzata A. Kulczycka,et al.  Qualitative and quantitative comparisons of B-spline offset surface approximation methods , 2002, Comput. Aided Des..

[17]  S. Coquillart Computing offsets of B-spline curves , 1987 .

[18]  R. Camarero,et al.  A Fundamental Solution to the Problem of Domain Decomposition in Structured Grid Generation , 2003 .

[19]  James A. Sethian,et al.  Level set and fast marching methods in image processing and computer vision , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[20]  Scott Eberhardt,et al.  Automatic multi-block grid generation for high-lift configuration wings , 1995 .

[21]  Les A. Piegl,et al.  Computing offsets of NURBS curves and surfaces , 1999, Comput. Aided Des..

[22]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[23]  Ron Kimmel,et al.  Fast Marching Methods , 2004 .

[24]  John M. Sullivan,et al.  Adaptive mesh generation using a normal offsetting technique , 1997 .

[25]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[26]  B. G. Prakash,et al.  Computing offsets of trimmed NURBS surfaces , 2003, Comput. Aided Des..

[27]  R.T. Farouki,et al.  The approximation of non-degenerate offset surfaces , 1986, Comput. Aided Geom. Des..

[28]  Shahyar Pirzadeh,et al.  Unstructured Viscous Grid Generation by Advancing-Layers Method , 1993 .

[29]  Andrew Y. C. Nee,et al.  Modifying free-formed NURBS curves and surfaces for offsetting without local self-intersection , 2004 .