Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes

Abstract : Ongoing technological advances in such disparate areas as consumer electronics, transportation, and energy generation and distribution are often hindered by the capabilities of current energy storage/conversion systems, thereby driving the search for high-performance power sources that are also economically viable, safe to operate, and have limited environmental impact. Electrochemical capacitors (ECs) are a class of energy-storage devices that fill the gap between the high specific energy of batteries and the high specific power of conventional electrostatic capacitors. The most widely available commercial EC, based on a symmetric configuration of two high-surface-area carbon electrodes and a nonaqueous electrolyte, delivers specific energies of up to 6/Whkg with sub-second response times. Specific energy can be enhanced by moving to asymmetric configurations and selecting electrode materials (e.g., transition metal oxides) that store charge via rapid and reversible faradaic reactions. Asymmetric EC designs also circumvent the main limitation of aqueous electrolytes by extending their operating voltage window beyond the thermodynamic 1.2 V limit to operating voltages approaching 2 V, resulting in high-performance ECs that will satisfy the challenging power and energy demands of emerging technologies and in a more economically and environmentally friendly form than conventional symmetric ECs and batteries.

[1]  D. Bélanger,et al.  Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon , 2011 .

[2]  Xin Zhao,et al.  The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. , 2011, Nanoscale.

[3]  Juergen Biener,et al.  Advanced carbon aerogels for energy applications , 2011 .

[4]  Weifeng Wei,et al.  Manganese oxide-based materials as electrochemical supercapacitor electrodes. , 2011, Chemical Society reviews.

[5]  Chao-Ming Huang,et al.  Microwave-assisted hydrothermal synthesis of crystalline WO3–WO3·0.5H2O mixtures for pseudocapacitors of the asymmetric type , 2011 .

[6]  P. Pickup,et al.  An asymmetric supercapacitor with anthraquinone and dihydroxybenzene modified carbon fabric electrodes , 2011 .

[7]  Yen‐Po Lin,et al.  Characterization of MnFe 2O 4/LiMn 2O 4 aqueous asymmetric supercapacitor , 2011 .

[8]  Marshall Miller,et al.  The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications , 2011 .

[9]  A. Best,et al.  Conducting-polymer-based supercapacitor devices and electrodes , 2011 .

[10]  François Béguin,et al.  Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor , 2011 .

[11]  Anbao Yuan,et al.  Comparison of nano-MnO2 derived from different manganese sources and influence of active material weight ratio on performance of nano-MnO2/activated carbon supercapacitor , 2010 .

[12]  L. Kong,et al.  Co0.56Ni0.44 Oxide Nanoflake Materials and Activated Carbon for Asymmetric Supercapacitor , 2010 .

[13]  F. Wei,et al.  Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes , 2010 .

[14]  F. Lufrano,et al.  Investigation of polymer electrolyte hybrid supercapacitor based on manganese oxide-carbon electrodes , 2010 .

[15]  N. Wu,et al.  Long-term electrochemical behaviors of manganese oxide aqueous electrochemical capacitor under reducing potentials☆ , 2010 .

[16]  G. Chen,et al.  Nanocomposites of manganese oxides and carbon nanotubes for aqueous supercapacitor stacks , 2010 .

[17]  Marshall Miller,et al.  Testing of electrochemical capacitors: Capacitance, resistance, energy density, and power capability , 2010 .

[18]  T. Brousse,et al.  Nanosized α-LiFeO2 as electrochemical supercapacitor electrode in neutral sulfate electrolytes , 2010 .

[19]  T. Brousse,et al.  Electrolytes for hybrid carbon–MnO2 electrochemical capacitors , 2010 .

[20]  Mario Conte,et al.  Supercapacitors Technical Requirements for New Applications , 2010 .

[21]  John R. Miller,et al.  Graphene Double-Layer Capacitor with ac Line-Filtering Performance , 2010, Science.

[22]  Feng Li,et al.  High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. , 2010, ACS nano.

[23]  E. Higuchi,et al.  Preparation and characterization of Ni-based positive electrodes for use in aqueous electrochemical capacitors , 2010 .

[24]  Colin G. Cameron,et al.  A Polypyrrole/Phosphomolybdic Acid ∣ Poly ( 3 , 4-ethylenedioxythiophene ) /Phosphotungstic Acid Asymmetric Supercapacitor , 2010 .

[25]  W. Zhuang,et al.  Carbon titania mesoporous composite whisker as stable supercapacitor electrode material , 2010 .

[26]  A. Mansour,et al.  Electroless deposition of conformal nanoscale iron oxide on carbon nanoarchitectures for electrochemical charge storage. , 2010, ACS nano.

[27]  François Béguin,et al.  A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte , 2010 .

[28]  A. Lubers,et al.  Effect of temperature and atmosphere on the conductivity and electrochemical capacitance of single-unit-thick ruthenium dioxide , 2010 .

[29]  R. Ruoff,et al.  Review of Best Practice Methods for Determining an Electrode Material's Performance for Ultracapacitors , 2010, 1005.0805.

[30]  E. Frąckowiak,et al.  Hybrid materials for supercapacitor application , 2010 .

[31]  R. Holze,et al.  A cheap asymmetric supercapacitor with high energy at high power: Activated carbon//K0.27MnO2·0.6H2O , 2010 .

[32]  K. Fukuda,et al.  Synthesis of nanosheet crystallites of ruthenate with an alpha-NaFeO2-related structure and its electrochemical supercapacitor property. , 2010, Inorganic chemistry.

[33]  G. Chen,et al.  Individual and Bipolarly Stacked Asymmetrical Aqueous Supercapacitors of CNTs / SnO2 and CNTs / MnO2 Nanocomposites , 2009 .

[34]  K. Fukuda,et al.  Swelling, intercalation, and exfoliation behavior of layered ruthenate derived from layered potassium ruthenate , 2009 .

[35]  Hao Zhang,et al.  Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries , 2009 .

[36]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[37]  Andrew Burke,et al.  Ultracapacitor technologies and application in hybrid and electric vehicles , 2009 .

[38]  D. Bélanger,et al.  Direct Redox Deposition of Manganese Oxide on Multiscaled Carbon Nanotube/Microfiber Carbon Electrode for Electrochemical Capacitor , 2009 .

[39]  F. Favier,et al.  Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. , 2008, ACS applied materials & interfaces.

[40]  P. Pickup,et al.  An asymmetric anthraquinone-modified carbon/ruthenium oxide supercapacitor , 2009 .

[41]  Nobuhiro Ogihara,et al.  Encapsulation of Nanodot Ruthenium Oxide into KB for Electrochemical Capacitors , 2009 .

[42]  Lijun Gao,et al.  Electrodeposited PbO2 thin film on Ti electrode for application in hybrid supercapacitor , 2009 .

[43]  Jiayan Luo,et al.  Electrochemical profile of an asymmetric supercapacitor using carbon-coated LiTi2(PO4)3 and active carbon electrodes , 2009 .

[44]  Srinivasan Sampath,et al.  Hydrogel-polymer electrolytes for electrochemical capacitors: an overview , 2009 .

[45]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[46]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[47]  G. Chen,et al.  Manganese oxide based materials for supercapacitors , 2008 .

[48]  P. Pickup,et al.  Anthraquinone modified carbon fabric supercapacitors with improved energy and power densities , 2008 .

[49]  E. Morallón,et al.  Effect of surface chemistry on electrochemical storage of hydrogen in porous carbon materials , 2008 .

[50]  D. Qu Mechanism for electrochemical hydrogen insertion in carbonaceous materials , 2008 .

[51]  Xiao‐Qing Yang,et al.  Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications , 2008 .

[52]  Yen‐Po Lin,et al.  Investigation on capacity fading of aqueous MnO2·nH2O electrochemical capacitor , 2008 .

[53]  Jingwei Sun,et al.  Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution , 2008 .

[54]  Pierre-Louis Taberna,et al.  Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor , 2007 .

[55]  E. Frąckowiak Carbon materials for supercapacitor application. , 2007, Physical chemistry chemical physics : PCCP.

[56]  Jeffrey W Long,et al.  Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. , 2007, Nano letters.

[57]  Mathieu Toupin,et al.  Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors , 2006 .

[58]  F. Béguin,et al.  State of hydrogen electrochemically stored using nanoporous carbons as negative electrode materials in an aqueous medium , 2006 .

[59]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[60]  B. Conway,et al.  Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs , 2006 .

[61]  Nae-Lih Wu,et al.  Investigation of Pseudocapacitive Charge-Storage Reaction of MnO2 ∙ nH2O Supercapacitors in Aqueous Electrolytes , 2006 .

[62]  Yves Scudeller,et al.  Multi-level reduced-order thermal modeling of electrochemical capacitors , 2006 .

[63]  Prashant N. Kumta,et al.  Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors , 2006 .

[64]  B. Wei,et al.  Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials , 2006 .

[65]  Lithium insertion into TiO2 from aqueous solution – Facilitated by nanostructure , 2006 .

[66]  Jianlin Shi,et al.  MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors. , 2006, The journal of physical chemistry. B.

[67]  F. Béguin,et al.  High-voltage asymmetric supercapacitors operating in aqueous electrolyte , 2006 .

[68]  D. Bélanger,et al.  Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors , 2006 .

[69]  François Béguin,et al.  Effect of various porous nanotextures on the reversible electrochemical sorption of hydrogen in activated carbons , 2006 .

[70]  J. Jang,et al.  Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors , 2006 .

[71]  Yasushi Murakami,et al.  Fabrication of Thin-Film, Flexible, and Transparent Electrodes Composed of Ruthenic Acid Nanosheets by Electrophoretic Deposition and Application to Electrochemical Capacitors , 2006 .

[72]  François Béguin,et al.  Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium , 2006 .

[73]  F. Béguin,et al.  Electrochemical energy storage in ordered porous carbon materials , 2005 .

[74]  W. Sugimoto,et al.  Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance. , 2005, The journal of physical chemistry. B.

[75]  François Béguin,et al.  Performance of Manganese Oxide/CNTs Composites as Electrode Materials for Electrochemical Capacitors , 2005 .

[76]  Wendy G. Pell,et al.  Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery-type electrodes , 2004 .

[77]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[78]  F. Béguin,et al.  Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials , 2004 .

[79]  Mathieu Toupin,et al.  A Hybrid Activated Carbon-Manganese Dioxide Capacitor using a Mild Aqueous Electrolyte , 2004 .

[80]  W. Sugimoto,et al.  Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. , 2003, Angewandte Chemie.

[81]  Alberto Piqué,et al.  Direct-Write Planar Microultracapacitors by Laser Engineering , 2003 .

[82]  Jim P. Zheng,et al.  The Limitations of Energy Density of Battery/Double-Layer Capacitor Asymmetric Cells , 2003 .

[83]  P. Taberna,et al.  Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors , 2003 .

[84]  D. Bélanger,et al.  A Hybrid Fe3 O 4 ­ MnO2 Capacitor in Mild Aqueous Electrolyte , 2003 .

[85]  Karen E. Swider-Lyons,et al.  Local Atomic Structure and Conduction Mechanism of Nanocrystalline Hydrous RuO2 from X-ray Scattering , 2002 .

[86]  Seok-Hyun Lee,et al.  Use of KCl Aqueous Electrolyte for 2 V Manganese Oxide/Activated Carbon Hybrid Capacitor , 2002 .

[87]  R. Fu,et al.  Proton NMR and Dynamic Studies of Hydrous Ruthenium Oxide , 2002 .

[88]  B. Popov,et al.  Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method , 2002 .

[89]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[90]  S. W. Kim,et al.  Expansion of Active Site Area and Improvement of Kinetic Reversibility in Electrochemical Pseudocapacitor Electrode , 2001 .

[91]  A. Burke Ultracapacitors: why, how, and where is the technology , 2000 .

[92]  Robert A. Huggins,et al.  Supercapacitors and electrochemical pulse sources , 2000 .

[93]  M. Anderson,et al.  Novel Electrode Materials for Thin‐Film Ultracapacitors: Comparison of Electrochemical Properties of Sol‐Gel‐Derived and Electrodeposited Manganese Dioxide , 2000 .

[94]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[95]  John B. Goodenough,et al.  Supercapacitor Behavior with KCl Electrolyte , 1999 .

[96]  X. Qin,et al.  Electrochemical Hydrogen Storage of Multiwalled Carbon Nanotubes , 1999 .

[97]  Brian E. Conway,et al.  Behavior of Molybdenum Nitrides as Materials for Electrochemical Capacitors Comparison with Ruthenium Oxide , 1998 .

[98]  H. Kanoh,et al.  Electrochemical Intercalation of Alkali-Metal Ions into Birnessite-Type Manganese Oxide in Aqueous Solution , 1997 .

[99]  B. Conway,et al.  The role and utilization of pseudocapacitance for energy storage by supercapacitors , 1997 .

[100]  Jim P. Zheng,et al.  Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors , 1995 .

[101]  M. Munshi Handbook of Solid State Batteries and Capacitors , 1995 .

[102]  B. Conway Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage , 1991 .

[103]  M. Gautier CHROMOSOMES IN CONGENITAL HEART-DISEASE , 1966 .