Discovery of III–V Semiconductors: Physical Properties and Application
暂无分享,去创建一个
[1] N. M. Shmidt,et al. Rare-earth elements in the technology of III–V compounds and devices based on these compounds , 2003 .
[2] Herbert Kroemer,et al. Evolution of the band-gap and band-edge energies of the lattice-matched GaInAsSb∕GaSb and GaInAsSb∕InAs alloys as a function of composition , 2005 .
[3] K. D. Moiseev,et al. Type II broken-gap InAs/GaIn0.17As0.22Sb heterostructures with abrupt planar interface , 2000 .
[4] A. R. H. Niedermeyer,et al. Die Diffusionskoeffizienten von Antimon und Arsen in Germanium bei verschiedenen Konzentrationen und die Diffusion bestimmter Störstellenprofile durch Programmdiffusion , 1964, September 1.
[5] Lord Rayleigh,et al. CXII. The problem of the whispering gallery , 1910 .
[6] Maya P. Mikhailova,et al. InAs/GaSb/AlSb composite quantum well structure preparation with help of reflectance anisotropy spectroscopy , 2017 .
[7] N. D. Stoyanov,et al. High-efficiency 3.4–4.4 μm light-emitting diodes based on a p-AlGaAsSb/n-InGaAsSb/n-AlGaAsSb heterostructure operating at room temperature , 2001 .
[8] J. M. Chamberlain,et al. Terahertz injection electroluminescence in multiperiod quantum-cascade AlGaAs/GaAs structures , 2001 .
[9] Z. Alferov,et al. The history and future of semiconductor heterostructures , 1998 .
[10] H. Kroemer,et al. Staggered-lineup heterojunctions as sources of tunable below-gap radiation: Operating principle and semiconductor selection , 1983, IEEE Electron Device Letters.
[11] Gottfried H. Döhler,et al. Electron-hole subbands at the GaSbInAs interface , 1980 .
[12] Evgenii V. Ivanov,et al. Features of high-temperature electroluminescence in an LED n-GaSb/n-InGaAsSb/p-AlGaAsSb heterostructure with high potential barriers , 2016 .
[13] N. D. Stoyanov,et al. High-efficiency LEDs of 1.6–2.4 µm spectral range for medical diagnostics and environment monitoring , 2003 .
[14] K. D. Moiseev,et al. Magnetotransport in a semimetal channel in p-Ga1−xInxAsySb1−y/p-InAs heterostructures with various compositions of the solid solution , 2000 .
[15] N. D. Stoyanov,et al. Ultimate InAsSbP solid solutions for 2.6–2.8-μm LEDs , 2001 .
[16] Maya P. Mikhailova,et al. Optoelectronic sensors on GaSb- and InAs-based heterostructures for ecological monitoring and medical diagnostics , 2007, SPIE Optics + Optoelectronics.
[17] Tom Kuusela,et al. Photoacoustic gas detection using a cantilever microphone and III–V mid-IR LEDs , 2009 .
[18] Victor I. Fistul,et al. Preparation of Heavily Doped Semiconductors , 1969 .
[19] Maya P. Mikhailova,et al. High-speed photodiodes for 2.0-4.0 μm spectral range , 2007, International Conference on Photoelectronics and Night Vision Devices.
[20] Victor G. Plotnichenko,et al. Middle-infrared chalcogenide glass fibers with losses lower than 100 db km−1 , 1989 .
[21] K. D. Moiseev,et al. Spin-dependent electron transport in a type II GaInAsSb/p-InAs heterojunction doped with Mn in quantized magnetic fields , 2009 .
[22] Z. Alferov,et al. Nobel Lecture: The double heterostructure concept and its applications in physics, electronics, and technology , 2001 .
[23] K. D. Moiseev,et al. Quantum dots and quantum dashes in the narrow-gap InSb/InAsSbP system , 2011 .
[24] John Lehrer Zyskind,et al. High-speed GalnAsSb/GaSb PIN photodetectors for wavelengths to 2.3 μm , 1986, International Laser Science Conference.
[25] K. D. Moiseev,et al. Specific features of the epitaxial growth of narrow-gap InSb quantum dots on an InAs substrate , 2009 .
[26] L. V. Danilov,et al. Vertical transport in type-II heterojunctions with InAs/GaSb/AlSb composite quantum wells in a high magnetic field , 2017 .
[27] Vladimir V. Romanov,et al. On InAsSbP epitaxial layers with ultimate phosphorus content, lattice-matched with an InAs substrate , 2014 .
[28] M. P. Mikhailova,et al. Spectral Response of the Photoeffects in InAs , 1965 .
[29] I. A. Andreev,et al. Fast-response p-i-n photodiodes for 0.9–2.4 μm wavelength range , 2010 .
[30] H. Welker,et al. Über neue halbleitende Verbindungen , 1952 .
[31] K. D. Moiseev,et al. Transition from the type-II broken-gap heterojunction to the staggered one in the GaInAsSb/InAs(GaSb) system , 2007 .
[32] M. Mikhailova,et al. Type II heterojunctions in the GaInAsSb/GaSb system , 1994 .
[33] G. Sullivan,et al. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. , 2011, Physical review letters.
[34] Vladimir V. Romanov,et al. High-temperature interfacial electroluminescence in type-II broken-gap heterostructures based on InSb quantum dashes in n-InAs matrix , 2014 .
[35] Yu. P. Yakovlev,et al. EXPERIMENTAL OBSERVATION OF WHISPERING GALLERY MODES IN SECTOR DISK LASERS , 2009 .
[36] B. A. Wilson. Carrier dynamics and recombination mechanisms in staggered-alignment heterostructures , 1988 .
[37] K. D. Moiseev,et al. Interface-induced optical and transport phenomena in type II broken-gap single heterojunctions , 2004 .
[38] K. D. Moiseev,et al. InSb quantum dots produced by liquid-phase epitaxy on InGaAsSb/GaSb substrates , 2017 .
[39] Leo Esaki,et al. In1−xGaxAs‐GaSb1−yAsy heterojunctions by molecular beam epitaxy , 1977 .
[40] N. D. Stoyanov,et al. Superlinear electroluminescence in GaSb-based heterostructures with high potential barriers , 2013 .
[41] Chaoxing Liu,et al. Quantum spin Hall effect in inverted type-II semiconductors. , 2008, Physical review letters.
[42] K. D. Moiseev,et al. Interface Lasers with Asymmetric Band Offset Confinement , 2006 .
[43] K. D. Moiseev,et al. Energy spectrum and quantum magnetotransport in type-II heterojunctions , 2004 .
[44] K. D. Moiseev,et al. A 2.78-μm laser diode based on hybrid AlGaAsSb/InAs/CdMgSe double heterostructure grown by molecular-beam epitaxy , 2003 .
[45] James L. Merz,et al. Staggered‐lineup heterojunctions as sources of tunable below‐gap radiation: Experimental verification , 1984 .
[46] K. D. Moiseev,et al. Vertical transport in a GaInAsSb∕p-InAs broken-gap type II heterojunction , 2007 .
[47] David L. Goodstein. A note on the structure of positive ions in liquid 4He , 1978 .
[48] N. D. Stoyanov,et al. Portable optical water-and-oil analyzer based on a mid-IR (1.6–2.4 μm) optron consisting of an LED array and a wideband photodiode , 2010 .
[49] I. A. Andreev,et al. Sulfide passivation of GaSb/GaInAsSb/GaAlAsSb photodiode heterostructures , 1997 .
[50] N. D. Stoyanov,et al. SUPERLINEAR ELECTROLUMINESCENCE DUE TO IMPACT IONIZATION IN GASB-BASED HETEROSTRUCTURES WITH DEEP AL(AS)SB/INASSB/AL(AS)SB QUANTUM WELLS , 2012 .
[51] K. D. Moiseev,et al. Two‐dimensional semimetal channel in a type II broken‐gap GaInAsSb/InAs single heterojunction , 2003 .
[52] A. Hospodkova,et al. Electroluminescence in p-InAs/AlSb/InAsSb/AlSb/p(n)-GaSb type II heterostructures with deep quantum wells at the interface , 2010 .
[53] N. N. Zinov'ev,et al. Confocal terahertz imaging , 2009 .
[54] N. D. Stoyanov,et al. Type II GaSb based photodiodes operating in spectral range 1.5-4.8 /spl mu/m at room temperature , 2002 .
[55] Anthony Krier,et al. Mid-infrared ring laser , 2003 .