Discovery of III–V Semiconductors: Physical Properties and Application

This overview is devoted to the discovery, development of the technology, and investigation of III–V semiconductors performed at the Ioffe Institute, where the first steps in fabricating III–V semiconductors were taken in 1950 and investigations into their fundamental properties were begun under the leadership of two outstanding scientists—Nina Aleksandrovna Goryunova and Dmitry Nikolayevich Nasledov. Further development of these investigations is reflected in the works of followers and pupils of D.N. Nasledov, who have worked and continue to work at subsidiaries of the Ioffe Institute. The contribution of these investigations to studying heterostructures based on III–V compounds as well as to the development of semiconductor devices for electronics, optoelectronics, and photonics is considered.

[1]  N. M. Shmidt,et al.  Rare-earth elements in the technology of III–V compounds and devices based on these compounds , 2003 .

[2]  Herbert Kroemer,et al.  Evolution of the band-gap and band-edge energies of the lattice-matched GaInAsSb∕GaSb and GaInAsSb∕InAs alloys as a function of composition , 2005 .

[3]  K. D. Moiseev,et al.  Type II broken-gap InAs/GaIn0.17As0.22Sb heterostructures with abrupt planar interface , 2000 .

[4]  A. R. H. Niedermeyer,et al.  Die Diffusionskoeffizienten von Antimon und Arsen in Germanium bei verschiedenen Konzentrationen und die Diffusion bestimmter Störstellenprofile durch Programmdiffusion , 1964, September 1.

[5]  Lord Rayleigh,et al.  CXII. The problem of the whispering gallery , 1910 .

[6]  Maya P. Mikhailova,et al.  InAs/GaSb/AlSb composite quantum well structure preparation with help of reflectance anisotropy spectroscopy , 2017 .

[7]  N. D. Stoyanov,et al.  High-efficiency 3.4–4.4 μm light-emitting diodes based on a p-AlGaAsSb/n-InGaAsSb/n-AlGaAsSb heterostructure operating at room temperature , 2001 .

[8]  J. M. Chamberlain,et al.  Terahertz injection electroluminescence in multiperiod quantum-cascade AlGaAs/GaAs structures , 2001 .

[9]  Z. Alferov,et al.  The history and future of semiconductor heterostructures , 1998 .

[10]  H. Kroemer,et al.  Staggered-lineup heterojunctions as sources of tunable below-gap radiation: Operating principle and semiconductor selection , 1983, IEEE Electron Device Letters.

[11]  Gottfried H. Döhler,et al.  Electron-hole subbands at the GaSbInAs interface , 1980 .

[12]  Evgenii V. Ivanov,et al.  Features of high-temperature electroluminescence in an LED n-GaSb/n-InGaAsSb/p-AlGaAsSb heterostructure with high potential barriers , 2016 .

[13]  N. D. Stoyanov,et al.  High-efficiency LEDs of 1.6–2.4 µm spectral range for medical diagnostics and environment monitoring , 2003 .

[14]  K. D. Moiseev,et al.  Magnetotransport in a semimetal channel in p-Ga1−xInxAsySb1−y/p-InAs heterostructures with various compositions of the solid solution , 2000 .

[15]  N. D. Stoyanov,et al.  Ultimate InAsSbP solid solutions for 2.6–2.8-μm LEDs , 2001 .

[16]  Maya P. Mikhailova,et al.  Optoelectronic sensors on GaSb- and InAs-based heterostructures for ecological monitoring and medical diagnostics , 2007, SPIE Optics + Optoelectronics.

[17]  Tom Kuusela,et al.  Photoacoustic gas detection using a cantilever microphone and III–V mid-IR LEDs , 2009 .

[18]  Victor I. Fistul,et al.  Preparation of Heavily Doped Semiconductors , 1969 .

[19]  Maya P. Mikhailova,et al.  High-speed photodiodes for 2.0-4.0 μm spectral range , 2007, International Conference on Photoelectronics and Night Vision Devices.

[20]  Victor G. Plotnichenko,et al.  Middle-infrared chalcogenide glass fibers with losses lower than 100 db km−1 , 1989 .

[21]  K. D. Moiseev,et al.  Spin-dependent electron transport in a type II GaInAsSb/p-InAs heterojunction doped with Mn in quantized magnetic fields , 2009 .

[22]  Z. Alferov,et al.  Nobel Lecture: The double heterostructure concept and its applications in physics, electronics, and technology , 2001 .

[23]  K. D. Moiseev,et al.  Quantum dots and quantum dashes in the narrow-gap InSb/InAsSbP system , 2011 .

[24]  John Lehrer Zyskind,et al.  High-speed GalnAsSb/GaSb PIN photodetectors for wavelengths to 2.3 μm , 1986, International Laser Science Conference.

[25]  K. D. Moiseev,et al.  Specific features of the epitaxial growth of narrow-gap InSb quantum dots on an InAs substrate , 2009 .

[26]  L. V. Danilov,et al.  Vertical transport in type-II heterojunctions with InAs/GaSb/AlSb composite quantum wells in a high magnetic field , 2017 .

[27]  Vladimir V. Romanov,et al.  On InAsSbP epitaxial layers with ultimate phosphorus content, lattice-matched with an InAs substrate , 2014 .

[28]  M. P. Mikhailova,et al.  Spectral Response of the Photoeffects in InAs , 1965 .

[29]  I. A. Andreev,et al.  Fast-response p-i-n photodiodes for 0.9–2.4 μm wavelength range , 2010 .

[30]  H. Welker,et al.  Über neue halbleitende Verbindungen , 1952 .

[31]  K. D. Moiseev,et al.  Transition from the type-II broken-gap heterojunction to the staggered one in the GaInAsSb/InAs(GaSb) system , 2007 .

[32]  M. Mikhailova,et al.  Type II heterojunctions in the GaInAsSb/GaSb system , 1994 .

[33]  G. Sullivan,et al.  Evidence for helical edge modes in inverted InAs/GaSb quantum wells. , 2011, Physical review letters.

[34]  Vladimir V. Romanov,et al.  High-temperature interfacial electroluminescence in type-II broken-gap heterostructures based on InSb quantum dashes in n-InAs matrix , 2014 .

[35]  Yu. P. Yakovlev,et al.  EXPERIMENTAL OBSERVATION OF WHISPERING GALLERY MODES IN SECTOR DISK LASERS , 2009 .

[36]  B. A. Wilson Carrier dynamics and recombination mechanisms in staggered-alignment heterostructures , 1988 .

[37]  K. D. Moiseev,et al.  Interface-induced optical and transport phenomena in type II broken-gap single heterojunctions , 2004 .

[38]  K. D. Moiseev,et al.  InSb quantum dots produced by liquid-phase epitaxy on InGaAsSb/GaSb substrates , 2017 .

[39]  Leo Esaki,et al.  In1−xGaxAs‐GaSb1−yAsy heterojunctions by molecular beam epitaxy , 1977 .

[40]  N. D. Stoyanov,et al.  Superlinear electroluminescence in GaSb-based heterostructures with high potential barriers , 2013 .

[41]  Chaoxing Liu,et al.  Quantum spin Hall effect in inverted type-II semiconductors. , 2008, Physical review letters.

[42]  K. D. Moiseev,et al.  Interface Lasers with Asymmetric Band Offset Confinement , 2006 .

[43]  K. D. Moiseev,et al.  Energy spectrum and quantum magnetotransport in type-II heterojunctions , 2004 .

[44]  K. D. Moiseev,et al.  A 2.78-μm laser diode based on hybrid AlGaAsSb/InAs/CdMgSe double heterostructure grown by molecular-beam epitaxy , 2003 .

[45]  James L. Merz,et al.  Staggered‐lineup heterojunctions as sources of tunable below‐gap radiation: Experimental verification , 1984 .

[46]  K. D. Moiseev,et al.  Vertical transport in a GaInAsSb∕p-InAs broken-gap type II heterojunction , 2007 .

[47]  David L. Goodstein A note on the structure of positive ions in liquid 4He , 1978 .

[48]  N. D. Stoyanov,et al.  Portable optical water-and-oil analyzer based on a mid-IR (1.6–2.4 μm) optron consisting of an LED array and a wideband photodiode , 2010 .

[49]  I. A. Andreev,et al.  Sulfide passivation of GaSb/GaInAsSb/GaAlAsSb photodiode heterostructures , 1997 .

[50]  N. D. Stoyanov,et al.  SUPERLINEAR ELECTROLUMINESCENCE DUE TO IMPACT IONIZATION IN GASB-BASED HETEROSTRUCTURES WITH DEEP AL(AS)SB/INASSB/AL(AS)SB QUANTUM WELLS , 2012 .

[51]  K. D. Moiseev,et al.  Two‐dimensional semimetal channel in a type II broken‐gap GaInAsSb/InAs single heterojunction , 2003 .

[52]  A. Hospodkova,et al.  Electroluminescence in p-InAs/AlSb/InAsSb/AlSb/p(n)-GaSb type II heterostructures with deep quantum wells at the interface , 2010 .

[53]  N. N. Zinov'ev,et al.  Confocal terahertz imaging , 2009 .

[54]  N. D. Stoyanov,et al.  Type II GaSb based photodiodes operating in spectral range 1.5-4.8 /spl mu/m at room temperature , 2002 .

[55]  Anthony Krier,et al.  Mid-infrared ring laser , 2003 .