Phenome-wide functional dissection of pleiotropic effects highlights key molecular pathways for human complex traits

[1]  R. Do,et al.  HOPS: a quantitative score reveals pervasive horizontal pleiotropy in human genetic variation is driven by extreme polygenicity of human traits and diseases , 2019, Genome Biology.

[2]  Christopher D. Brown,et al.  The GTEx Consortium atlas of genetic regulatory effects across human tissues , 2019, Science.

[3]  N. Wray,et al.  Genetic correlations of polygenic disease traits: from theory to practice , 2019, Nature Reviews Genetics.

[4]  Marie Verbanck,et al.  HOPS: a quantitative score reveals pervasive horizontal pleiotropy in human genetic variation is driven by extreme polygenicity of human traits and diseases , 2019, Genome Biology.

[5]  A. Naba,et al.  The cancer matrisome: From comprehensive characterization to biomarker discovery. , 2019, Seminars in cell & developmental biology.

[6]  M. Mills,et al.  A scientometric review of genome-wide association studies , 2019, Communications Biology.

[7]  O. Andreassen,et al.  A global overview of pleiotropy and genetic architecture in complex traits , 2019, Nature Genetics.

[8]  Jun Sese,et al.  ChIP‐Atlas: a data‐mining suite powered by full integration of public ChIP‐seq data , 2018, EMBO reports.

[9]  Gerome Breen,et al.  Navigome: Navigating the Human Phenome , 2018, bioRxiv.

[10]  Anthony J. Payne,et al.  Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps , 2018, Nature Genetics.

[11]  Ayellet V. Segrè,et al.  Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation , 2018, Nature Genetics.

[12]  Mary E. Haas,et al.  Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations , 2018, Nature Genetics.

[13]  Spiros C. Denaxas,et al.  Phenome-wide association analysis of LDL-cholesterol lowering genetic variants in PCSK9 , 2018, bioRxiv.

[14]  B. Neale,et al.  Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases , 2018, Nature Genetics.

[15]  Christopher M. DeBoever,et al.  Global Biobank Engine: enabling genotype-phenotype browsing for biobank summary statistics , 2018, bioRxiv.

[16]  Luke R. Lloyd-Jones,et al.  Signatures of negative selection in the genetic architecture of human complex traits , 2018, Nature Genetics.

[17]  D. Posthuma,et al.  Functional mapping and annotation of genetic associations with FUMA , 2017, Nature Communications.

[18]  E. Zeggini,et al.  Statistical methods to detect pleiotropy in human complex traits , 2017, Open Biology.

[19]  K. Rawlik,et al.  An atlas of genetic associations in UK Biobank , 2017, bioRxiv.

[20]  Tom R. Gaunt,et al.  PhenoSpD: an integrated toolkit for phenotypic correlation estimation and multiple testing correction using GWAS summary statistics , 2017, bioRxiv.

[21]  K. Anstey,et al.  Association of AKAP6 and MIR2113 with cognitive performance in a population based sample of older adults , 2016, bioRxiv.

[22]  Gerard Tromp,et al.  Phenome-Wide Association Study to Explore Relationships between Immune System Related Genetic Loci and Complex Traits and Diseases , 2016, PloS one.

[23]  J. Mesirov,et al.  The Molecular Signatures Database Hallmark Gene Set Collection , 2015 .

[24]  Joseph K. Pickrell,et al.  Detection and interpretation of shared genetic influences on 42 human traits , 2015, Nature Genetics.

[25]  Joris M. Mooij,et al.  MAGMA: Generalized Gene-Set Analysis of GWAS Data , 2015, PLoS Comput. Biol..

[26]  P. Elliott,et al.  UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age , 2015, PLoS medicine.

[27]  J. Hirschhorn,et al.  Biological interpretation of genome-wide association studies using predicted gene functions , 2015, Nature Communications.

[28]  J. Knight,et al.  Genomic mapping of the MHC transactivator CIITA using an integrated ChIP-seq and genetical genomics approach , 2014, Genome Biology.

[29]  S. Purcell,et al.  Pleiotropy in complex traits: challenges and strategies , 2013, Nature Reviews Genetics.

[30]  Annalise B. Paaby,et al.  The many faces of pleiotropy. , 2013, Trends in Genetics.

[31]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[32]  F. Agakov,et al.  Abundant pleiotropy in human complex diseases and traits. , 2011, American journal of human genetics.

[33]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[34]  Frank W. Stearns One Hundred Years of Pleiotropy: A Retrospective , 2010, Genetics.

[35]  Jianzhi Zhang,et al.  Genomic patterns of pleiotropy and the evolution of complexity , 2010, Proceedings of the National Academy of Sciences.

[36]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[37]  G. Church,et al.  A global view of pleiotropy and phenotypically derived gene function in yeast , 2005, Molecular systems biology.

[38]  E. Langford,et al.  Is the Property of Being Positively Correlated Transitive? , 2001 .

[39]  Dana C. Crawford,et al.  The detection and characterization of pleiotropy: discovery, progress, and promise , 2016, Briefings Bioinform..

[40]  Alexandra Naba,et al.  Overview of the matrisome--an inventory of extracellular matrix constituents and functions. , 2012, Cold Spring Harbor perspectives in biology.