California Legacy Survey. II. Occurrence of Giant Planets beyond the Ice Line

We used high-precision radial velocity measurements of FGKM stars to determine the occurrence of giant planets as a function of orbital separation spanning 0.03–30 au. Giant planets are more prevalent at orbital distances of 1–10 au compared to orbits interior or exterior of this range. The increase in planet occurrence at ∼1 au by a factor of ∼4 is highly statistically significant. A fall-off in giant planet occurrence at larger orbital distances is favored over models with flat or increasing occurrence. We measure 14.1−1.8+2.0 giant planets per 100 stars with semimajor axes of 2–8 au and 8.9−2.4+3.0 giant planets per 100 stars in the range 8–32 au, a decrease in occurrence with increasing orbital separation that is significant at the ∼2σ level. We find that the occurrence rate of sub-Jovian planets (0.1–1 Jupiter masses) is also enhanced for 1–10 au orbits. This suggests that lower-mass planets may share the formation or migration mechanisms that drive the increased prevalence near the water–ice line for their Jovian counterparts. Our measurements of cold gas giant occurrence are consistent with the latest results from direct imaging surveys and gravitational lensing surveys despite different stellar samples. We corroborate previous findings that giant planet occurrence increases with stellar mass and metallicity.

[1]  J. Crepp,et al.  The California Legacy Survey. I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades , 2021, The Astrophysical Journal Supplement Series.

[2]  B. Bitsch,et al.  Influence of grain size and composition on the contraction rates of planetary envelopes and on planetary migration , 2021, Astronomy & Astrophysics.

[3]  B. Macintosh,et al.  Understanding the Impacts of Stellar Companions on Planet Formation and Evolution: A Survey of Stellar and Planetary Companions within 25 pc , 2020, 2012.09190.

[4]  Eve J. Lee,et al.  Can Large-scale Migration Explain the Giant Planet Occurrence Rate? , 2020, The Astrophysical Journal.

[5]  J. Crepp,et al.  Joint Radial Velocity and Direct Imaging Planet Yield Calculations. I. Self-consistent Planet Populations , 2020, The Astrophysical Journal.

[6]  Marshall C. Johnson,et al.  Radial Velocity Discovery of an Eccentric Jovian World Orbiting at 18 au , 2019, The Astronomical Journal.

[7]  R. P. Butler,et al.  Detection of Planetary and Stellar Companions to Neighboring Stars via a Combination of Radial Velocity and Direct Imaging Techniques , 2019, The Astronomical Journal.

[8]  Dmitry Savransky,et al.  The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics from 10 to 100 au , 2019, The Astronomical Journal.

[9]  V. Bonvin,et al.  The CORALIE survey for southern extrasolar planets , 2019, Astronomy & Astrophysics.

[10]  S. Raymond,et al.  Rocky super-Earths or waterworlds: the interplay of planet migration, pebble accretion, and disc evolution , 2019, Astronomy & Astrophysics.

[11]  Christoph Mordasini,et al.  Hints for a Turnover at the Snow Line in the Giant Planet Occurrence Rate , 2018, The Astrophysical Journal.

[12]  D. Bennett,et al.  Microlensing Results Challenge the Core Accretion Runaway Growth Scenario for Gas Giants , 2018, The Astrophysical Journal.

[13]  A. Johansen,et al.  Slowing Down Type II Migration of Gas Giants to Match Observational Data , 2018, The Astrophysical Journal.

[14]  B. Ercolano,et al.  The comparative effect of FUV, EUV and X-ray disc photoevaporation on gas giant separations , 2018, 1803.00571.

[15]  Sarah Blunt,et al.  RadVel: The Radial Velocity Modeling Toolkit , 2018, 1801.01947.

[16]  Y. Alibert,et al.  Planetesimal formation starts at the snow line , 2017, 1710.00009.

[17]  C. Ormel,et al.  Planetesimal formation near the snowline: in or out? , 2017, 1702.02151.

[18]  Akihiko Fukui,et al.  THE EXOPLANET MASS-RATIO FUNCTION FROM THE MOA-II SURVEY: DISCOVERY OF A BREAK AND LIKELY PEAK AT A NEPTUNE MASS , 2016 .

[19]  R. P. Butler,et al.  The Anglo-Australian Planet Search. XXV. A Candidate Massive Saturn Analog Orbiting HD 30177 , 2016, 1612.02072.

[20]  B. Schölkopf,et al.  THE POPULATION OF LONG-PERIOD TRANSITING EXOPLANETS , 2016, 1607.08237.

[21]  Jason T. Wright,et al.  THREE TEMPERATE NEPTUNES ORBITING NEARBY STARS , 2016, 1607.00007.

[22]  P. Rojo,et al.  Four new planets around giant stars and the mass-metallicity correlation of planet-hosting stars , 2016, 1603.03738.

[23]  Marshall C. Johnson,et al.  TWO NEW LONG-PERIOD GIANT PLANETS FROM THE MCDONALD OBSERVATORY PLANET SEARCH AND TWO STARS WITH LONG-PERIOD RADIAL VELOCITY SIGNALS RELATED TO STELLAR ACTIVITY CYCLES , 2015, 1512.02965.

[24]  B. Scott Gaudi,et al.  SYNTHESIZING EXOPLANET DEMOGRAPHICS: A SINGLE POPULATION OF LONG-PERIOD PLANETARY COMPANIONS TO M DWARFS CONSISTENT WITH MICROLENSING, RADIAL VELOCITY, AND DIRECT IMAGING SURVEYS , 2015, 1508.04434.

[25]  Seth Andrew Jacobson,et al.  The great dichotomy of the Solar System: Small terrestrial embryos and massive giant planet cores , 2015, 1506.01666.

[26]  Andreas Quirrenbach,et al.  Precise Radial Velocities of Giant Stars VII. Occurrence Rate of Giant Extrasolar Planets as a Function of Mass and Metallicity , 2014, 1412.4634.

[27]  Evgenya L. Shkolnik,et al.  PLANETS AROUND LOW-MASS STARS (PALMS). IV. THE OUTER ARCHITECTURE OF M DWARF PLANETARY SYSTEMS , 2014, 1411.3722.

[28]  D. Hogg,et al.  EXOPLANET POPULATION INFERENCE AND THE ABUNDANCE OF EARTH ANALOGS FROM NOISY, INCOMPLETE CATALOGS , 2014, 1406.3020.

[29]  G. Marcy,et al.  Prevalence of Earth-size Planets Orbiting Sun-like Stars , 2015, 1510.03902.

[30]  Laird M. Close,et al.  THE GEMINI/NICI PLANET-FINDING CAMPAIGN: THE FREQUENCY OF PLANETS AROUND YOUNG MOVING GROUP STARS , 2013, 1309.1462.

[31]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[32]  John Asher Johnson,et al.  THE TRENDS HIGH-CONTRAST IMAGING SURVEY. IV. THE OCCURRENCE RATE OF GIANT PLANETS AROUND M DWARFS , 2013, 1307.5849.

[33]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[34]  W. Cochran,et al.  THE McDONALD OBSERVATORY PLANET SEARCH: NEW LONG-PERIOD GIANT PLANETS AND TWO INTERACTING JUPITERS IN THE HD 155358 SYSTEM , 2012, 1202.0265.

[35]  K. Ulaczyk,et al.  One or more bound planets per Milky Way star from microlensing observations , 2012, Nature.

[36]  M. R. Haas,et al.  PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.

[37]  F. Bouchy,et al.  The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample , 2011, 1111.5019.

[38]  Jason T. Wright,et al.  RETIRED A STARS AND THEIR COMPANIONS. VII. 18 NEW JOVIAN PLANETS , 2011, 1108.4205.

[39]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[40]  Howard Isaacson,et al.  The Occurrence and Mass Distribution of Close-in Super-Earths, Neptunes, and Jupiters , 2010, Science.

[41]  Adam D. Myers,et al.  INFERRING THE ECCENTRICITY DISTRIBUTION , 2010, 1008.4146.

[42]  John Asher Johnson,et al.  Giant Planet Occurrence in the Stellar Mass-Metallicity Plane , 2010, 1005.3084.

[43]  C. Mordasini Planetary Population Synthesis , 2010, 1804.01532.

[44]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[45]  John Asher Johnson,et al.  TEN NEW AND UPDATED MULTIPLANET SYSTEMS AND A SURVEY OF EXOPLANETARY SYSTEMS , 2008, 0812.1582.

[46]  Douglas N. C. Lin,et al.  Toward a Deterministic Model of Planetary Formation. V. Accumulation Near the Ice Line and Super-Earths , 2008 .

[47]  Andrew Cumming,et al.  The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets , 2008, 0803.3357.

[48]  O. Tamuz,et al.  The CORALIE survey for southern extra-solar planets - XV. Discovery of two eccentric planets orbiting HD 4113 and HD 156846 , 2007, 0710.5028.

[49]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[50]  W. Cochran,et al.  Exploring the Frequency of Close-in Jovian Planets around M Dwarfs , 2006, astro-ph/0606121.

[51]  J. Valenti,et al.  The Planet-Metallicity Correlation , 2005 .

[52]  D. Lin,et al.  Toward a Deterministic Model of Planetary Formation. I. A Desert in the Mass and Semimajor Axis Distributions of Extrasolar Planets , 2003, astro-ph/0312144.

[53]  Spain.,et al.  Spectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formation , 2003, astro-ph/0311541.

[54]  Berkeley,et al.  A Planet at 5 AU around 55 Cancri , 2002, astro-ph/0207294.

[55]  R. Paul Butler,et al.  First Results from the Anglo-Australian Planet Search: A Brown Dwarf Candidate and a 51 Peg-like Planet , 2000, astro-ph/0012204.

[56]  Michel Mayor,et al.  ELODIE: A spectrograph for accurate radial velocity measurements , 1996 .

[57]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[58]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.