On Minimally-supported D-optimal Designs for Polynomial Regression with Log-concave Weight Function
暂无分享,去创建一个
[1] F. Pukelsheim. Optimal Design of Experiments , 1993 .
[2] W. Näther. Optimum experimental designs , 1994 .
[3] H. Dette,et al. A note on optimal designs in weighted polynomial regression for the classical efficiency functions , 2003 .
[4] W. Chan,et al. Unimodality, convexity, and applications , 1989 .
[5] W. J. Studden,et al. Theory Of Optimal Experiments , 1972 .
[6] David G. Luenberger,et al. Linear and nonlinear programming , 1984 .
[7] D. F. Hays,et al. Table of Integrals, Series, and Products , 1966 .
[8] Mark Yuying An,et al. Logconcavity versus Logconvexity: A Complete Characterization , 1998 .
[9] P. Laycock,et al. Optimum Experimental Designs , 1995 .
[10] J. Kiefer,et al. The Equivalence of Two Extremum Problems , 1960, Canadian Journal of Mathematics.
[11] F. Chang. D-Optimal designs for weighted polynomial regression—A functional approach , 2005 .
[12] R. K. Meyer,et al. The Coordinate-Exchange Algorithm for Constructing Exact Optimal Experimental Designs , 1995 .
[13] M. Bagnoli,et al. Log-concave probability and its applications , 2004 .
[14] Stephen Wolfram,et al. The Mathematica Book , 1996 .
[15] I. Ibragimov,et al. On the Composition of Unimodal Distributions , 1956 .
[16] D-OPTIMAL DESIGNS FOR POLYNOMIAL REGRESSION WITH WEIGHT FUNCTION x/(1 + x) , 2003 .
[17] Drew Seils,et al. Optimal design , 2007 .
[18] Michael Jackson,et al. Optimal Design of Experiments , 1994 .