A bivariate C1 cubic super spline space on Powell-Sabin triangulation
暂无分享,去创建一个
[1] Ming-Jun Lai,et al. Scattered data interpolation and approximation using bivariate C1 piecewise cubic polynomials , 1996, Comput. Aided Geom. Des..
[2] Larry L. Schumaker,et al. Smooth macro-elements on Powell-Sabin-12 splits , 2005, Math. Comput..
[3] Larry L. Schumaker,et al. The dimension of bivariate spline spaces of smoothnessr for degreed≥4r+1 , 1987 .
[4] Ren-Hong Wang,et al. Multivariate spline spaces , 1983 .
[5] Larry L. Schumaker,et al. Macro-elements and stable local bases for splines on Clough-Tocher triangulations , 2001, Numerische Mathematik.
[6] Larry L. Schumaker,et al. Smooth macro-elements based on Clough-Tocher triangle splits , 2002, Numerische Mathematik.
[7] Paul Sablonnière,et al. Cr-finite elements of Powell-Sabin type on the three direction mesh , 1996, Adv. Comput. Math..
[8] Ming-Jun Lai,et al. On Dual Functionals of polynomials in B-Form , 1991 .
[9] Ming-Jun Lai,et al. On C 2 quintic spline functions over triangulations of Powell-Sabin's type , 1996 .
[10] P. Percell. On Cubic and Quartic Clough–Tocher Finite Elements , 1976 .
[11] Gerald Farin,et al. Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..
[12] Larry L. Schumaker,et al. Macro-elements and stable local bases for splines on Powell-Sabin triangulations , 2003, Math. Comput..
[13] Paul Sablonnière,et al. Composite finite elements of class Ck , 1985 .