Vortex identification and tracking in unsteady flows

Abstract The present Note deals with the identification and tracking of vortices in a time-resolved unsteady flow. The approach is based on the combination of two existing post-processing tools that are Galilean invariant functions: feature flow field f and vortex identification algorithm γ 2 . An analytical development shows that the joint use of γ 2 and the streamlines of f allows to identify and track the location of the center of a vortex core with a non-zero convection velocity. We discuss the applicability of this procedure to actual flows for which the assumptions of the analytical approach may not be strictly valid. The procedure is validated using PIV measurements performed in an oscillating flow in a model of thermoacoustic refrigerator. This method proves to be efficient for the automated analysis of convection processes when large numbers of vortices are involved. To cite this article: A. Berson et al., C. R. Mecanique 337 (2009).

[1]  J. Délery Robert Legendre and Henri Werlé: Toward the Elucidation of Three-Dimensional Separation , 2001 .

[2]  G. Swift Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators , 2017 .

[3]  J. Borée,et al.  Instantaneous skin-friction pattern analysis using automated critical point detection on near-wall PIV data , 2006 .

[4]  L. Graftieaux,et al.  Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows , 2001 .

[5]  M. S. Chong,et al.  A general classification of three-dimensional flow fields , 1990 .

[6]  Omar M. Knio,et al.  Experimental and computational visualization of the flow field in a thermoacoustic stack , 2003 .

[7]  A. Berson Vers la miniaturisation des réfrigérateurs thermoacoustiques : Caractérisation du transport non-linéaire de chaleur et des écoulements secondaires , 2007 .

[8]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[9]  Hans-Peter Seidel,et al.  Feature Flow Fields , 2003, VisSym.

[10]  P. Moin,et al.  Eddies, streams, and convergence zones in turbulent flows , 1988 .

[11]  Philippe Blanc-Benon,et al.  Measurement of acoustic velocity in the stack of a thermoacoustic refrigerator using particle image velocimetry , 2008 .

[12]  Pch Paul Aben,et al.  2-D PIV measurements of oscillatory flow around parallel plates , 2009 .

[13]  Philippe Blanc-Benon,et al.  Nonperiodicity of the flow within the gap of a thermoacoustic couple at high amplitudes. , 2007, The Journal of the Acoustical Society of America.

[14]  Etienne Besnoin, Omar M. Knio NUMERICAL STUDY OF THERMOACOUSTIC HEAT EXCHANGERS IN THE THIN PLATE LIMIT , 2001 .

[15]  李幼升,et al.  Ph , 1989 .

[16]  Jean-Christophe Valière,et al.  Analysis of the Acoustic Flow at an Abrupt Change in Section of an Acoustic Waveguide Using Particle Image Velocimetry and Proper Orthogonal Decomposition , 2008 .