First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media.

A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell's equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell-Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell-Lorentz equations, we trace the development of the first-principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies.

[1]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[2]  Thomas Wriedt,et al.  The Mie theory : basics and applications , 2012 .

[3]  Snow H. Tseng,et al.  Comparing Monte Carlo simulation and pseudospectral time-domain numerical solutions of Maxwell's equations of light scattering by a macroscopic random medium , 2007 .

[4]  Ralf Lenke,et al.  Multiple Scattering of Light : Coherent Backscattering and Transmission , 2000 .

[5]  Le-Wei Li,et al.  Spheroidal Wave Functions in Electromagnetic Theory , 2001 .

[6]  S. Savescu Dielectric properties of heterogeneous materials , 2009 .

[7]  P. Waterman,et al.  SYMMETRY, UNITARITY, AND GEOMETRY IN ELECTROMAGNETIC SCATTERING. , 1971 .

[8]  Jacek Chowdhary,et al.  Radiative transfer theory verified by controlled laboratory experiments. , 2013, Optics letters.

[9]  Akhlesh Lakhtakia,et al.  On Two Numerical Techniques for Light Scattering by Dielectric Agglomerated Structures , 1993, Journal of research of the National Institute of Standards and Technology.

[10]  Michael I. Mishchenko,et al.  Gustav Mie and the fundamental concept of electromagnetic scattering by particles: A perspective , 2009 .

[11]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[12]  M. Bertolotti,et al.  Statistical Properties of Scattered Light , 1975 .

[13]  A. Doicu,et al.  Equivalent refractive index of a sphere with multiple spherical inclusions , 2001 .

[14]  J. Goodman Introduction to Fourier optics , 1969 .

[15]  K A Fuller,et al.  Optical resonances and two-sphere systems. , 1991, Applied optics.

[16]  F.Michael Kahnert,et al.  Numerical methods in electromagnetic scattering theory , 2003 .

[17]  E. A. Power Introductory Quantum Electrodynamics , 1964 .

[18]  Staffan Ström,et al.  T-matrix formulation of electromagnetic scattering from multilayered scatterers , 1974 .

[19]  Coherent backscattering: Conceptions and misconceptions (reply to comments by Bruce W. Hapke and Robert M. Nelson) , 2010 .

[20]  E. Purcell,et al.  Scattering and Absorption of Light by Nonspherical Dielectric Grains , 1973 .

[21]  M. Mishchenko,et al.  Electromagnetic scattering by densely packed particulate ice at radar wavelengths: exact theoretical results and remote-sensing implications. , 2009, Applied optics.

[22]  Andrew K Dunn,et al.  Far-field superposition method for three-dimensional computation of light scattering from multiple cells. , 2010, Journal of biomedical optics.

[23]  Augusto García-Valenzuela,et al.  Coherent reflectance in a system of random Mie scatterers and its relation to the effective-medium approach. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  Dariusz Stramski,et al.  Measurements of high-frequency light fluctuations induced by sea surface waves with an Underwater Porcupine Radiometer System , 2011 .

[25]  尾中 敬 Light scattering by spheroidal grains , 1980 .

[26]  A. Ishimaru,et al.  Retroreflectance from a dense distribution of spherical particles , 1984 .

[27]  Y. Lo,et al.  Multiple scattering of EM waves by spheres part I--Multipole expansion and ray-optical solutions , 1971 .

[28]  J. Bérenger Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves , 1996 .

[29]  M. Mishchenko Measurement of Electromagnetic Energy Flow Through a Sparse Particulate Medium: A Perspective , 2013 .

[30]  Hester Volten,et al.  Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm , 2001 .

[31]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[32]  V. Tishkovets,et al.  Coherent backscattering by discrete random media composed of clusters of spherical particles , 2013 .

[33]  Ludmilla Kolokolova,et al.  Polarization of Saturn's moon Iapetus. II. Comparison of the dark and the bright sides , 2013 .

[34]  J. Peltoniemi,et al.  A Critical review of theoretical models of negatively polarized light scattered by atmosphereless solar system bodies , 1994 .

[35]  Allen Taflove,et al.  Exact solution of Maxwell's equations for optical interactions with a macroscopic random medium. , 2004, Optics letters.

[36]  R. E. Raab,et al.  Multipole Theory in Electromagnetism , 2004 .

[37]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[38]  Maxim A Yurkin,et al.  Discrimination of granulocyte subtypes from light scattering: theoretical analysis using a granulated sphere model. , 2007, Optics express.

[39]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[40]  Kinsell L. Coulson,et al.  Polarization and Intensity of Light in the Atmosphere , 1989 .

[41]  Ping Yang,et al.  Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method , 2014 .

[42]  Shing-Chow Chan,et al.  Light Field , 2014, Computer Vision, A Reference Guide.

[43]  Freund,et al.  Weak localization and light scattering from disordered solids. , 1986, Physical review letters.

[44]  T. Vesala Radiative Transfer in the Atmosphere and Ocean , 2003 .

[45]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.

[46]  A. Rubenchik,et al.  Modeling of laser interactions with composite materials. , 2013, Applied optics.

[47]  S. Wolf,et al.  Effect of dust grain porosity on the appearance of protoplanetary disks , 2014, 1407.6575.

[48]  M. Mishchenko,et al.  Efficient finite-difference time-domain scheme for light scattering by dielectric particles: application to aerosols. , 2000, Applied optics.

[49]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[50]  J. Hovenier,et al.  Overview of Scattering by Nonspherical Particles , 2000 .

[51]  Pavel Litvinov,et al.  Rigorous derivation of superposition T-matrix approach from solution of inhomogeneous wave equation , 2007 .

[52]  C. Linton Electromagnetic Scattering by Particles and Particle Groups: An Introduction , 2015 .

[53]  B. U. Felderhof On the propagation and scattering of light in fluids , 1974 .

[54]  R. Barrera,et al.  Overview of an effective‐medium approach to the reflection and refraction of light at a turbid colloidal half‐space , 2012 .

[55]  V. Babenko,et al.  Electromagnetic scattering in disperse media : inhomogeneous and anisotropic particles , 2003 .

[56]  Michael I. Mishchenko,et al.  Numerically exact computer simulations of light scattering by densely packed, random particulate media , 2011 .

[57]  E. Murphy,et al.  The computation of electromagnetic scattering from concentric spherical structures , 1963 .

[58]  K. Lumme,et al.  Optimal cubature on the sphere and other orientation averaging schemes , 2011 .

[59]  I. Ciric,et al.  Separation of Variables for Electromagnetic Sea ttering by Spheroidal Particles , 2000 .

[60]  Y. Shkuratov,et al.  The scattering matrix of random media consisting of large opaque spheres calculated using ray tracing and accounting for coherent backscattering enhancement , 2007 .

[61]  Kari Lumme,et al.  Coherent backscattering effects with Discrete Dipole Approximation method , 2007 .

[62]  A. D. Buckingham Collision theory , 1980, Nature.

[63]  Valery V. Tuchin,et al.  Optical polarization in biomedical applications , 2006 .

[64]  Michael I. Mishchenko,et al.  Thermal Radiation in Disperse Systems: An Engineering Approach. L.A. Dombrovsky, D. Baillis., Begell House, Inc., Redding, CT (2010). (Hardbound, xx+689 pp, ISBN:978-1-56700-268-3). , 2011 .

[65]  S. Griffis EDITOR , 1997, Journal of Navigation.

[66]  Ad Lagendijk,et al.  Polarisation effects in weak localisation of light , 1988 .

[67]  Scott B. Jones,et al.  Modeling the Permittivity of Two-Phase Media Containing Monodisperse Spheres: Effects of Microstructure and Multiple Scattering , 2007 .

[68]  Alexander A. Kokhanovsky,et al.  Light Scattering Media Optics: Problems and Solutions , 2010 .

[69]  C. Mobley Light and Water: Radiative Transfer in Natural Waters , 1994 .

[70]  J. Basu,et al.  Photoluminescence decay rate engineering of CdSe quantum dots in ensemble arrays embedded with gold nano-antennae , 2013 .

[71]  A. Yaghjian,et al.  Electric dyadic Green's functions in the source region , 1980, Proceedings of the IEEE.

[72]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[73]  V. Oinas,et al.  Atmospheric Radiation , 1963, Nature.

[74]  R. Luebbers,et al.  The Finite Difference Time Domain Method for Electromagnetics , 1993 .

[75]  Michael I. Mishchenko,et al.  Directional radiometry and radiative transfer: The convoluted path from centuries-old phenomenology to physical optics , 2014 .

[76]  R. Newton Scattering theory of waves and particles , 1966 .

[77]  Qiang Xu,et al.  Numerical simulation of multiple scattering by random discrete particles illuminated by Gaussian beams. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[78]  Leung Tsang,et al.  Scattering properties of dense media from Monte Carlo simulations with application to active remote sensing of snow , 1996 .

[79]  D. Saxon Tensor Scattering Matrix for the Electromagnetic Field , 1955 .

[80]  P. Barber Absorption and scattering of light by small particles , 1984 .

[81]  D. S. Jones,et al.  Transient Electromagnetic Fields , 1976 .

[82]  M. Mishchenko Scale invariance rule in electromagnetic scattering , 2006 .

[83]  B. Berne,et al.  Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics , 1976 .

[84]  H. Isozaki INVERSE BOUNDARY VALUE PROBLEMS IN THE HOROSPHERE — A LINK BETWEEN HYPERBOLIC GEOMETRY AND ELECTRICAL IMPEDANCE TOMOGRAPHY , 2007 .

[85]  Tom Rother,et al.  Electromagnetic Wave Scattering on Nonspherical Particles , 2009 .

[86]  Simulation of enhanced backscattering of light by numerically solving Maxwell's equations without heuristic approximations. , 2005, Optics express.

[87]  K. Lumme,et al.  Model of light scattering by dust particles in the solar system: Applications to cometary comae and planetary regoliths , 2011 .

[88]  P. Chylek,et al.  Effective Medium approximations for Heterogeneous Particles , 2000 .

[89]  Microscopic calculation of the constitutive relations , 2002, physics/0201035.

[90]  K. Haller Quantum Electrodynamics , 1979, Nature.

[91]  R. Barrera,et al.  Rigorous theoretical framework for particle sizing in turbid colloids using light refraction. , 2008, Optics express.

[92]  Lagendijk,et al.  Observation of weak localization of light in a finite slab: Anisotropy effects and light path classification. , 1987, Physical review letters.

[93]  David A. Robinson,et al.  Effects of aggregation on the permittivity of random media containing monodisperse spheres , 2009 .

[94]  D. Varshalovich,et al.  Quantum Theory of Angular Momentum , 1988 .

[95]  C. Sorensen Light Scattering by Fractal Aggregates: A Review , 2001 .

[96]  Leung Tsang,et al.  Multiple Scattering of Waves by Random Distribution of Particles for Applications in Light Scattering by Metal Nanoparticles , 2007 .

[97]  T. Thirunamachandran,et al.  Molecular quantum electrodynamics : an introduction to radiation-molecule interactions , 1998 .

[98]  Michael I. Mishchenko,et al.  Weak localization of electromagnetic waves by densely packed many-particle groups: Exact 3D results , 2007 .

[99]  J. Kong,et al.  Theory of microwave remote sensing , 1985 .

[100]  Alain Aspect,et al.  Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light , 2010 .

[101]  I. Farquhar Ergodic Theory in Classical Statistical Mechanics , 1967 .

[102]  J. Meseguer,et al.  Thermal radiation heat transfer , 2012 .

[103]  B. Peterson,et al.  T matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3) , 1973 .

[104]  Michael I. Mishchenko,et al.  Direct Simulation of Extinction in a Slab of Spherical Particles , 2013 .

[105]  M. Mishchenko,et al.  A multiple sphere T-matrix Fortran code for use on parallel computer clusters , 2011 .

[106]  D. Mackowski,et al.  Calculation of total cross sections of multiple-sphere clusters , 1994 .

[107]  J. Cuevas,et al.  Radiative Heat Transfer , 2018, ACS Photonics.

[108]  K. Muinonen Coherent backscattering of light by complex random media of spherical scatterers: numerical solution , 2004 .

[109]  Nikolai G. Khlebtsov,et al.  Spectral Extinction of Colloidal Gold and Its Biospecific Conjugates , 1996 .

[110]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[111]  Optical reflectivity of a disordered monolayer of highly scattering particles: coherent scattering model versus experiment. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[112]  Michael Aizenman Ergodic Theory in Statistical Mechanics. , 1975 .

[113]  Maxim A Yurkin,et al.  Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[114]  Allen Taflove,et al.  Pseudospectral time domain simulations of multiple light scattering in three‐dimensional macroscopic random media , 2006 .

[115]  J. Tyndall Essays on the Floating-Matter of the Air in Relation to Putrefaction and Infection , 2005 .

[116]  R. Barrera,et al.  Electromagnetic response of a random half-space of Mie scatterers within the effective-field approximation and the determination of the effective optical coefficients , 2003 .

[117]  M. Donelli Design of graphene‐based terahertz nanoantenna arrays , 2015 .

[118]  Umran S. Inan,et al.  Numerical Electromagnetics: The FDTD Method , 2011 .

[119]  E. B. Wilson,et al.  The Theory of Electrons , 1911 .

[120]  L. Tsang,et al.  Monte Carlo simulations of the extinction rate of dense media with randomly distributed dielectric spheres based on solution of Maxwell's equations. , 1992, Optics letters.

[121]  M. Silveirinha Poynting vector, heating rate, and stored energy in structured materials: A first-principles derivation , 2009 .

[122]  D. Deirmendjian Electromagnetic scattering on spherical polydispersions , 1969 .

[123]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[124]  Boris A. Kargin,et al.  The Monte Carlo Methods in Atmospheric Optics , 1980 .

[125]  I. Gnedin,et al.  Propagation and Polarization of Radiation in Cosmic Media , 1995 .

[126]  Michael I. Mishchenko,et al.  Scattering of electromagnetic waves by ensembles of particles and discrete random media , 2011 .

[127]  Vlasta Perinova,et al.  Quantum Aspects of Light Propagation , 2009 .

[128]  Ari Henrik Sihvola,et al.  Effective permittivity of mixtures: numerical validation by the FDTD method , 2000, IEEE Trans. Geosci. Remote. Sens..

[129]  K. Schram Quantum statistical derivation of the macroscopic Maxwell equations , 1960 .

[130]  Michael I. Mishchenko,et al.  Applicability of the effective-medium approximation to heterogeneous aerosol particles , 2016 .

[131]  M. Mishchenko Multiple scattering by particles embedded in an absorbing medium. 2. Radiative transfer equation , 2008 .

[132]  Alwin Kienle,et al.  Multiple scattering of polarized light: influence of absorption , 2014, Physics in medicine and biology.

[133]  S. Sharma,et al.  Light Scattering by Optically Soft Particles: Theory and Applications , 2006 .

[134]  R. García-Pelayo,et al.  Multiple Scattering , 2001 .

[135]  M. Pinar Mengüç,et al.  Thermal Radiation Heat Transfer , 2020 .

[136]  D. Thouless,et al.  Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems , 1979 .

[137]  K. Lumme,et al.  Light-scattering efficiency of starch acetate pigments as a function of size and packing density. , 2006, Applied optics.

[138]  J. Swinburne Electromagnetic Theory , 1894, Nature.

[139]  Gorden Videen,et al.  Conditions of applicability of the single-scattering approximation. , 2007, Optics express.

[140]  P. Kubelka Ein Beitrag zur Optik der Farban striche , 1931 .

[141]  Wave propagation through a dielectric layer containing densely packed fibers , 2011 .

[142]  A. Lagendijk,et al.  Observation of weak localization of light in a random medium. , 1985, Physical review letters.

[143]  R. A. Minlos,et al.  Representations of the Rotation and Lorentz Groups and Their Applications , 1965 .

[144]  Claus Müller,et al.  Foundations of the mathematical theory of electromagnetic waves , 1969 .

[145]  J W Walsh,et al.  Photometry , 1919, The British journal of ophthalmology.

[146]  Alwin Kienle,et al.  Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory. , 2012, Journal of biomedical optics.

[147]  D. Saxon Lectures on the scattering of light , 1974 .

[148]  Michael I. Mishchenko,et al.  Calculation of the T matrix and the scattering matrix for ensembles of spheres , 1996 .

[149]  A Dogariu,et al.  Near-Field Effects in Mesoscopic Light Transport. , 2015, Physical review letters.

[150]  V. Farafonov,et al.  Light scattering by a core-mantle spheroidal particle. , 1996, Applied optics.

[151]  Michael I. Mishchenko,et al.  Direct simulation of multiple scattering by discrete random media illuminated by Gaussian beams , 2011 .

[152]  M. Ausloos,et al.  Absorption spectrum of clusters of spheres from the general solution of Maxwell's equations. The long-wavelength limit , 1980 .

[153]  A. Sihvola,et al.  Numerical testing of dielectric mixing rules by FDTD method , 1999 .

[154]  Yasuhiko Okada,et al.  Light scattering and absorption by densely packed groups of spherical particles , 2009 .

[155]  F. Marzano,et al.  Scattering properties of modeled complex snowflakes and mixed‐phase particles at microwave and millimeter frequencies , 2014 .

[156]  Michael I. Mishchenko,et al.  A study of radiative properties of fractal soot aggregates using the superposition T-matrix method , 2008 .

[157]  Vladimir M. Shalaev,et al.  Optical Metamaterials: Fundamentals and Applications , 2009 .

[158]  J. Vlieger On the derivation of the integral equation for the propagation of light in dielectric crystals , 1971 .

[159]  M. Schnaiter,et al.  Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals – cloud chamber measurements in the context of contrail and cirrus microphysics , 2012 .

[160]  Yasuo Kuga,et al.  Attenuation constant of a coherent field in a dense distribution of particles , 1982 .

[161]  Andrew A. Lacis,et al.  Scattering, Absorption, and Emission of Light by Small Particles , 2002 .

[162]  van Stef Stef Eijndhoven,et al.  Well-posedness of domain integral equations for a dielectric object in homogeneous background , 2008 .

[163]  Karri Muinonen,et al.  Radar albedos and circular-polarization ratios for realistic inhomogeneous media using the discrete-dipole approximation , 2014 .

[164]  H. A. Lorentz La Théorie Électromagnétique de Maxwell et Son Application Aux Corps Mouvants , 1936 .

[165]  P. Yang,et al.  Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200 , 2012 .

[166]  A. Kienle,et al.  Light scattering by multiple spheres: comparison between Maxwell theory and radiative-transfer-theory calculations. , 2009, Optics letters.

[167]  Thomas Wriedt,et al.  Comprehensive Thematic T-matrix Reference Database: a 2013-2014 Update , 2014 .

[168]  B. Stout,et al.  Dependent light scattering in white paint films: clarification and application of the theoretical concepts , 2012, Journal of Coatings Technology and Research.

[169]  P. Buseck,et al.  TEM study of aerosol particles from clean and polluted marine boundary layers over the North Atlantic , 2003 .

[170]  Adrian Doicu,et al.  Light Scattering by Systems of Particles: Null-Field Method with Discrete Sources: Theory and Programs , 2014 .

[171]  K. N. Liou,et al.  Finite Difference Time Domain Method for Light Scattering by Nonspherical and Inhomogeneous Particles , 2000 .

[172]  Srirang Manohar,et al.  Discrete Dipole Approximation simulations of gold nanorod optical properties:choice of input parameters and comparison with experiment , 2009 .

[173]  J. T. Houghton Atmospheric radiative transfer , 1977, Nature.

[174]  D. Ceburnis,et al.  Light backscattering and scattering by nonspherical sea-salt aerosols , 2003 .

[176]  Hester Volten,et al.  The Amsterdam–Granada Light Scattering Database , 2012 .

[177]  M. Pinar Mengüç,et al.  Compendium of scattering matrix element profiles for soot agglomerates , 2003 .

[178]  D. F. Johnston,et al.  Representations of the Rotation and Lorentz Groups and Their Applications , 1965 .

[179]  S. Asano,et al.  Light scattering by a spheroidal particle. , 1975, Applied optics.

[180]  Tatsuya Yokota,et al.  Benchmark results in vector atmospheric radiative transfer , 2010 .

[181]  D. Haar,et al.  Foundations of classical and quantum statistical mechanics , 1969 .

[182]  Photon polarization and frequency change in multiple scattering , 1970 .

[183]  J. Harris,et al.  Improved Sectioning of High-Impact Polystyrene and Styrene/Acrylate Latex Using an Oscillating Diamond Knife for Transmission Electron Microscopy , 2006, Microscopy and Microanalysis.

[184]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[185]  Brian Cairns,et al.  Optics of water cloud droplets mixed with black-carbon aerosols. , 2014, Optics letters.

[186]  Etemad,et al.  Weak localization of photons: Universal fluctuations and ensemble averaging. , 1986, Physical review letters.

[187]  Y. Rudich,et al.  Optical extinction of highly porous aerosol following atmospheric freeze drying , 2014 .

[188]  Nadezhda T. Zakharova,et al.  Direct demonstration of the concept of unrestricted effective-medium approximation. , 2014, Optics letters.

[189]  M. I. Mishchenko,et al.  Coherent backscattering and opposition effects observed in some atmosphereless bodies of the solar system , 2013, Solar System Research.

[190]  Yu. A. Kravtsov,et al.  II Enhanced Backscattering in Optics , 1991 .

[191]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[192]  Brian Stout,et al.  Theoretical study of the scattering efficiency of rutile titanium dioxide pigments as a function of their spatial dispersion , 2009 .

[193]  S. Ho,et al.  Quantum optics in a dielectric: macroscopic electromagnetic-field and medium operators for a linear dispersive lossy medium-a microscopic derivation of the operators and their commutation relations , 1993 .

[194]  M. V. Rossum,et al.  Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion , 1998, cond-mat/9804141.

[195]  Edgard G. Yanovitskij Light scattering in inhomogeneous atmospheres , 1997 .

[196]  T. C. Choy Effective medium theory : principles and applications , 1999 .

[197]  Ping Yang,et al.  Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles , 2013 .

[198]  Brian Cairns,et al.  Electromagnetic scattering by a morphologically complex object: Fundamental concepts and common misconceptions , 2011 .

[199]  J. Piironen,et al.  The Opposition Effect and Negative Polarization of Structural Analogs for Planetary Regoliths , 2002 .

[200]  M. I. Mishchenko,et al.  Coherent backscatter and the opposition effect for E-type asteroids , 1993 .

[201]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[202]  Laurence D. Barron,et al.  Molecular Light Scattering and Optical Activity: Second Edition, revised and enlarged , 1983 .

[203]  R. Barrera,et al.  Multiple-scattering model for the coherent reflection and transmission of light from a disordered monolayer of particles. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[204]  E. C. S.,et al.  The Theory of Electric and Magnetic Susceptibilities , 1932, Nature.

[205]  J. Greffet,et al.  Scattering by a slab containing randomly located cylinders: comparison between radiative transfer and electromagnetic simulation. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[206]  J. Maxwell VIII. A dynamical theory of the electromagnetic field , 1865, Philosophical Transactions of the Royal Society of London.

[207]  S. Tseng Optical characteristics of a cluster of closely-packed dielectric spheres , 2008 .

[208]  Martin Costabel,et al.  Volume and surface integral equations for electromagnetic scattering by a dielectric body , 2010, J. Comput. Appl. Math..

[209]  D. Ter Haar,et al.  Elements of Statistical Mechanics , 1954 .

[210]  M. Mishchenko On the nature of the polarization opposition effect exhibited by Saturn's rings , 1993 .

[211]  K. S. Shifrin Physical optics of ocean water , 1988 .

[212]  Ludmilla Kolokolova,et al.  Modeling variations in near-infrared spectra caused by the coherent backscattering effect , 2011 .

[213]  D. Mackowski,et al.  A general superposition solution for electromagnetic scattering by multiple spherical domains of optically active media , 2014 .

[214]  Y. Shkuratov,et al.  Monte Carlo ray-tracing simulation of light scattering in particulate media with optically contrast structure , 2004 .

[215]  William M. Steen,et al.  Atom-Photon Interactions Basic Processes and Applications , 1992 .

[216]  Michael I. Mishchenko,et al.  Azimuthal asymmetry of the coherent backscattering cone: Theoretical results , 2009 .

[217]  V. G. Farafonov,et al.  Optical properties of spheroidal particles , 1993 .

[218]  Karri Muinonen,et al.  Computer simulations for multiple scattering of light rays in systems of opaque particles , 2003 .

[219]  M. Mishchenko,et al.  COHERENT BACKSCATTERING VERIFIED NUMERICALLY FOR A FINITE VOLUME OF SPHERICAL PARTICLES , 2012 .

[220]  M. Wendisch,et al.  IPRT polarized radiative transfer model intercomparison project – Phase A , 2015, 1901.01813.

[221]  M. Mishchenko Poynting-Stokes tensor and radiative transfer in discrete random media: the microphysical paradigm. , 2010, Optics express.

[222]  K. Lumme,et al.  The effect of the properties of porous media on light scattering , 2009 .

[223]  L. Landau,et al.  statistical-physics-part-1 , 1958 .

[224]  Anthony B. Davis,et al.  3D Radiative Transfer in Cloudy Atmospheres , 2005 .

[225]  R. Carminati,et al.  Electromagnetic field correlations in three-dimensional speckles , 2015 .

[226]  Karri Muinonen,et al.  Circular polarization of spherical-particle aggregates at backscattering , 2013 .

[227]  J. Kong,et al.  Scattering of Electromagnetic Waves: Theories and Applications , 2000 .

[228]  M. Mishchenko,et al.  Coherent backscattering by polydisperse discrete random media: exact T-matrix results. , 2011, Optics letters.

[229]  T. P. Wallace The scattering of light and other electromagnetic radiation by Milton Kerker. Academic Press, New York, 1969. 666 + xv pp. $33.50 , 1970 .

[230]  Spectropolarised ray-tracing simulations in densely packed particulate medium , 2007 .

[231]  M. Diebold Application of Light Scattering to Coatings: A User’s Guide , 2014 .

[232]  N. M. Shakhovskoy,et al.  Polarimetric remote sensing of Solar System objects , 2010, 1010.1171.

[233]  A. Penttila Quasi-specular reflection from particulate media , 2013, 1310.0624.

[234]  J. Schwinger,et al.  Variational Principles for Scattering Processes. I , 1950 .

[235]  J. Hovenier Measuring Scattering Matrices of Small Particles at Optical Wavelengths , 2000 .

[236]  A. Ishimaru,et al.  Backscattering enhancement of random discrete scatterers , 1984 .

[237]  J. Stillwell,et al.  Symmetry , 2000, Am. Math. Mon..

[238]  Leung Tsang,et al.  Electromagnetic Scattering by Bicontinuous Random Microstructures With Discrete Permittivities , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[239]  Scattering by a Thin Slab: Comparison Between Radiative Transfer and Electromagnetic Simulation , 2001 .

[240]  J. Conoir,et al.  Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles , 2006 .

[241]  P. Oetking Photometric studies of diffusely reflecting surfaces with applications to the brightness of the Moon , 1966 .

[242]  G. Russakoff,et al.  A Derivation of the Macroscopic Maxwell Equations , 1970 .

[243]  A. Beck,et al.  The Theory of Electromagnetism , 1964 .

[244]  Karri Muinonen,et al.  Inferring asteroid surface properties from radar albedos and circular‐polarization ratios , 2014 .

[245]  G. Kortuem,et al.  Reflectance Spectroscopy: Principles, Methods, Applications , 1969 .

[246]  V. Tishkovets,et al.  Light scattering by densely packed systems of particles: near-field effects , 2013 .

[247]  G. Ross,et al.  Electromagnetic Scattering and its Applications , 1982 .

[248]  M. Bouguer Traité d'optique sur la gradation de la lumiere : ouvrage posthume ... et publié par M. l'Abbé de la Caille ... pour servir de suite aux Memoires de l'Académie royale des sciences , 1974 .

[249]  Ludmilla Kolokolova,et al.  Polarization of Saturn's moon Iapetus III: Models of the bright and the dark sides , 2013 .

[250]  D. Mackowski,et al.  Exact solution for the scattering and absorption properties of sphere clusters on a plane surface , 2008 .

[251]  John Henry Poynting,et al.  On the transfer of energy in the electromagnetic field , 1883, Proceedings of the Royal Society of London.

[252]  Brian Cairns,et al.  Multiple scattering by random particulate media: exact 3D results. , 2007, Optics express.

[253]  A. Lacis,et al.  Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering , 2006 .

[254]  J. M. Luck,et al.  Multiple Rayleigh Scattering of Electromagnetic Waves , 1996, cond-mat/9611175.

[255]  Kenneth M. Watson,et al.  Multiple Scattering of Electromagnetic Waves in an Underdense Plasma , 1969 .

[256]  Michael I Mishchenko,et al.  Demonstration of numerical equivalence of ensemble and spectral averaging in electromagnetic scattering by random particulate media. , 2016, Journal of the Optical Society of America. A, Optics, image science, and vision.

[257]  G. W. Ford,et al.  Lectures in statistical mechanics , 1963 .

[258]  M. Mishchenko Coherent backscattering by two-sphere clusters. , 1996, Optics letters.

[259]  V. L. Kuzmin,et al.  Propagation and scattering of light in fluctuating media , 1994 .

[260]  Bruce T. Draine,et al.  The Discrete Dipole Approximation for Light Scattering by Irregular Targets , 2000 .

[261]  G. R. Wilkinson Reflectance Spectroscopy , 1968, Nature.

[262]  K. Muinonen,et al.  Polarimetry of Stars and Planetary Systems: Multiple scattering of light in particulate planetary media , 2015 .

[263]  C. cohen-tannoudji,et al.  Photons and Atoms: Introduction to Quantum Electrodynamics , 1989 .

[264]  A. Kienle,et al.  Comparison of Monte Carlo simulations with exact Maxwell solutions for polarized light scattering by multiple absorbing spheres , 2012 .

[265]  Michael I. Mishchenko,et al.  Scattering and radiative properties of complex soot and soot-containing aggregate particles , 2006 .

[266]  S. Mudaliar,et al.  Multiple Scattering Volume-Surface Interactions , 2013, IEEE Transactions on Antennas and Propagation.

[267]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[268]  E. K. Miller,et al.  Computational electromagnetics : frequency-domain method of moments , 1992 .

[269]  Adrian Doicu,et al.  Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources , 2000 .

[270]  Optimization of measurement angles for soot aggregate sizing by elastic light scattering, through design-of-experiment theory , 2012 .

[271]  Yiping Han,et al.  Multiple scattering of arbitrarily incident Bessel beams by random discrete particles. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[272]  Yu. A. Il’inskii,et al.  Electromagnetic response of material media , 1994 .

[273]  Y. Yung,et al.  Atmospheric Radiation: Theoretical Basis , 1989 .

[274]  Rosalba Saija,et al.  Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics , 2003 .

[275]  M. Hamid,et al.  Electromagnetic scattering by an arbitrary configuration of dielectric spheres , 1990 .

[276]  P. Kubelka,et al.  New Contributions to the Optics of Intensely Light-Scattering Materials. Part I , 1948 .

[277]  M. Mishchenko Electromagnetic scattering by a fixed finite object embedded in an absorbing medium. , 2007, Optics express.

[278]  James R. Wait,et al.  Electromagnetic scattering from a radially inhomogeneous sphere , 1962 .

[279]  P. Kubelka,et al.  New contributions to the optics of intensely light-scattering materials. , 1954, Journal of the Optical Society of America.

[280]  Jan Schäfer,et al.  Light scattering by multiple spheres: solutions of Maxwell theory compared to radiative transfer theory , 2009, European Conference on Biomedical Optics.

[281]  Craig Donner,et al.  Scattering , 2021, SIGGRAPH '09.

[282]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[283]  M. Mishchenko,et al.  DIRECT SOLUTIONS OF THE MAXWELL EQUATIONS EXPLAIN OPPOSITION PHENOMENA OBSERVED FOR HIGH-ALBEDO SOLAR SYSTEM OBJECTS , 2009 .

[284]  A. Schuster Radiation through a foggy atmosphere , 1903 .

[285]  Michael I. Mishchenko,et al.  Far-field approximation in electromagnetic scattering , 2006 .

[286]  L. Infeld Quantum Theory of Fields , 1949, Nature.

[287]  Leung Tsang,et al.  Monte Carlo Simulations of the Extinction Rate of Densely Packed Spheres with Clustered and Nonclustered Geometries , 1995 .

[288]  Chao Liu,et al.  A pseudo-spectral time domain method for light scattering computation , 2013 .

[289]  A. Yaghjian Electric dyadic Green's functions in the source region , 1980 .

[290]  Joop W. Hovenier,et al.  Conditions for the elements of the scattering matrix , 1986 .

[291]  M. Mishchenko,et al.  Morphology-dependent resonances of spherical droplets with numerous microscopic inclusions. , 2014, Optics letters.

[292]  Diederik S. Wiersma,et al.  Disordered photonics , 2013, Nature Photonics.

[293]  Kirk A. Fuller,et al.  Electromagnetic Scattering by Compounded Spherical Particles , 2000 .

[294]  Weng Cho Chew,et al.  The application of recursive aggregate T-matrix algorithm in the Monte Carlo simulations of the extinction rate of random distribution of particles , 1995 .

[295]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[296]  Georges R. Fournier,et al.  Light Scattering by Particles in Water: Theoretical and Experimental Foundations , 2007 .

[297]  Qing Huo Liu,et al.  The PSTD algorithm: A time-domain method requiring only two cells per wavelength , 1997 .

[298]  L. P. Costillo,et al.  Experimental determination of scattering matrices of dust particles at visible wavelengths: The IAA light scattering apparatus , 2010 .

[299]  Yiping Han,et al.  Simulation of electromagnetic scattering by random discrete particles using a hybrid FE-BI-CBFM technique , 2012 .

[300]  Michael I. Mishchenko,et al.  Optics of water microdroplets with soot inclusions: Exact versus approximate results , 2016 .

[301]  D. Mackowski An effective medium method for calculation of the T matrix of aggregated spheres , 2001 .

[302]  Wei Huang,et al.  Microwave Backscatter and Extinction by Soft Ice Spheres and Complex Snow Aggregates , 2010 .

[303]  L. G. Suttorp,et al.  Foundations of electrodynamics , 1972 .

[304]  A. Kirsch An integral equation approach and the interior transmission problem for Maxwell's equations , 2007 .

[305]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[306]  Andrew K. Dunn,et al.  Three-Dimensional Computation of Focused Beam Propagation through Multiple Biological Cells , 2009, 2009 DoD High Performance Computing Modernization Program Users Group Conference.

[307]  Editors , 1986, Brain Research Bulletin.

[308]  J. P. Barton,et al.  Electromagnetic field for a beam incident on two adjacent spherical particles. , 1991, Applied optics.

[309]  B. Scaife,et al.  Principles of dielectrics , 1989 .

[310]  Tomoyasu Tanaka Methods of Statistical Physics , 2002 .

[311]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[312]  C. Bohren Applicability of Effective-Medium Theories to problems of Scattering and Absorption by Nonhomogeneous Atmospheric Particles , 1986 .

[313]  J. Hovenier,et al.  Laboratory measurements of single light scattering by ensembles of randomly oriented small irregular particles in air. A review , 2011 .

[314]  Yiping Han,et al.  A review of the numerical investigation on the scattering of Gaussian beam by complex particles , 2014 .

[315]  Wolf,et al.  Weak localization and coherent backscattering of photons in disordered media. , 1985, Physical review letters.

[316]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[317]  D. Mackowski,et al.  Analysis of radiative scattering for multiple sphere configurations , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[318]  Benjamin Thomas,et al.  Polarization-resolved exact light backscattering by an ensemble of particles in air. , 2013, Optics express.

[319]  S. C. Hill,et al.  Light Scattering by Particles: Computational Methods , 1990 .

[320]  Thomas Wriedt,et al.  The Mie Theory , 2012 .

[321]  D. Mackowski,et al.  Light scattering by randomly oriented bispheres. , 1994, Optics letters.

[322]  Kun Shan Chen,et al.  Numerical investigation on polarization characteristics of coherent enhanced backscattering using SLPSTD. , 2010, Optics express.

[323]  Larry D. Travis,et al.  Light scattering by nonspherical particles : theory, measurements, and applications , 1998 .

[324]  G. Ritchie,et al.  Radiation in the Atmosphere , 2017 .

[325]  Edmund Taylor Whittaker,et al.  A history of the theories of aether and electricity , 1911 .

[326]  Leung Tsang,et al.  Multiple scattering of electromagnetic waves by random distributions of discrete scatterers with coherent potential and quantum mechanical formalism , 1980 .

[327]  M. Mishchenko,et al.  Gustav Mie and the Evolving Discipline of Electromagnetic Scattering by Particles , 2008 .

[328]  Ping Yang,et al.  Inhomogeneity structure and the applicability of effective medium approximations in calculating light scattering by inhomogeneous particles , 2014 .

[329]  Michael I. Mishchenko,et al.  Multiple scattering, radiative transfer, and weak localization in discrete random media: Unified microphysical approach , 2008 .

[330]  C. Linke,et al.  A review of optical measurements at the aerosol and cloud chamber AIDA , 2009 .

[331]  Adrian Doicu,et al.  Scattering by particles on or near a plane surface , 2008 .

[332]  C. Bohren,et al.  An introduction to atmospheric radiation , 1981 .

[333]  Eric Akkermans,et al.  Mesoscopic Physics of Electrons and Photons: Dephasing , 2007 .

[334]  Michael I. Mishchenko,et al.  Effects of aggregation on scattering and radiative properties of soot aerosols , 2005 .

[335]  Kari Lumme,et al.  Scattering from rough thin films: discrete-dipole-approximation simulations. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[336]  P. Sheng,et al.  Introduction to Wave Scattering, Localization and Mesoscopic Phenomena. Second edition , 1995 .

[337]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[338]  Arve Kylling,et al.  Volcanic ash infrared signature: porous non-spherical ash particle shapes compared to homogeneous spherical ash particles , 2014 .

[339]  L. Rosenfeld,et al.  Theory of electrons , 1951 .

[340]  M. van der Mee,et al.  Transfer of Polarized Light in Planetary Atmospheres: Basic Concepts and Practical Methods , 2005 .

[341]  Kamal Sarabandi,et al.  T-matrix determination of effective permittivity for three-dimensional dense random media , 2000 .

[342]  John E. Sipe,et al.  V Foundations of the Macroscopic Electromagnetic Theory of Dielectric Media , 1977 .

[343]  Mishchenko Polarization effects in weak localization of light: Calculation of the copolarized and depolarized backscattering enhancement factors. , 1991, Physical review. B, Condensed matter.

[344]  Michael I Mishchenko,et al.  Effects of absorption on multiple scattering by random particulate media: exact results. , 2007, Optics express.

[345]  Gergely Dolgos,et al.  Polarized Imaging Nephelometer for in situ airborne measurements of aerosol light scattering. , 2014, Optics express.

[346]  D. Haar,et al.  Statistical Physics , 1971, Nature.

[347]  M. A. Yurkina,et al.  The discrete dipole approximation : An overview and recent developments , 2007 .

[348]  G. Kristensson Coherent scattering by a collection of randomly located obstacles – An alternative integral equation formulation , 2015 .

[349]  O. Crosby Microspheres. , 2020, Archives of internal medicine.

[350]  Ad Lagendijk,et al.  Resonant multiple scattering of light , 1996 .

[351]  B. Roth,et al.  Atoms and Light , 2015 .

[352]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[353]  Yu. N. Barabanenkov,et al.  Wave corrections to the transfer equation for “back” scattering , 1973 .

[354]  E. Lommel Die Photometrie der diffusen Zurückwerfung , 1889 .

[355]  T. Trautmann,et al.  Radiation in the atmosphere , 2013 .

[356]  R. Barrera,et al.  Nonlocal nature of the electrodynamic response of colloidal systems , 2007 .

[357]  Michael Kahnert,et al.  Modelling radiometric properties of inhomogeneous mineral dust particles: Applicability and limitations of effective medium theories , 2015 .

[358]  J. Blackson,et al.  High Resolution Scanning Electron Microscopy Examination of Polymer Morphology , 2007, Microscopy and Microanalysis.

[359]  J. Tyndall The Glaciers of the Alps , 1870 .

[360]  BouguerPierre Essai d'Optique sur la Gradation de la Lumière , 1922 .

[361]  Michael I. Mishchenko,et al.  A Persistent Feature of Multiple Scattering of Waves in the Time-Domain: A Tutorial , 2015 .

[362]  J. H. Poynting XV. On the transfer of energy in the electromagnetic field , 1884, Philosophical Transactions of the Royal Society of London.

[363]  Alfons G. Hoekstra,et al.  The discrete-dipole-approximation code ADDA: Capabilities and known limitations , 2011 .

[364]  Parallelisation of rigorous light scattering simulation algorithms for nanostructured surfaces , 2010 .

[365]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[366]  S. Sukhov,et al.  Coupled dipole method for modeling optical properties of large-scale random media. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[367]  M. Mishchenko,et al.  Coherent Backscattering in the Cross-Polarized Channel , 2011 .