Adaptive reconnection-based arbitrary Lagrangian Eulerian method
暂无分享,去创建一个
[1] Desheng Wang,et al. Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations , 2003 .
[2] Allen Gersho,et al. Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.
[3] G. Sod. Numerical methods in fluid dynamics , 1985 .
[4] Pierre-Henri Maire,et al. A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..
[5] Lili Ju,et al. Adaptive Anisotropic Meshing For Steady Convection-Dominated Problems , 2009 .
[6] Dinshaw S. Balsara,et al. Maintaining Pressure Positivity in Magnetohydrodynamic Simulations , 1999 .
[7] C. W. Hirt,et al. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .
[8] Gunzburger,et al. Advances in Studies and Applications of Centroidal Voronoi Tessellations , 2010 .
[9] M. Shashkov,et al. An efficient linearity-and-bound-preserving remapping method , 2003 .
[10] John K. Dukowicz,et al. Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations , 1987 .
[11] W. Heilig,et al. Experimental and numerical study of the interaction between a planar shock wave and a square cavity , 1996 .
[12] Frédéric Alauzet,et al. Time accurate anisotropic goal-oriented mesh adaptation for unsteady flows , 2012, J. Comput. Phys..
[13] Timothy J. Barth,et al. Numerical Methods for Gasdynamic Systems on Unstructured Meshes , 1997, Theory and Numerics for Conservation Laws.
[14] Stéphane Del Pino,et al. Metric-based mesh adaptation for 2D Lagrangian compressible flows , 2011, J. Comput. Phys..
[15] Frédéric Alauzet. High‐order methods and mesh adaptation for Euler equations , 2008 .
[16] Q. Du,et al. Recent progress in robust and quality Delaunay mesh generation , 2006 .
[17] Raphaël Loubère,et al. ReALE: A Reconnection Arbitrary-Lagrangian―Eulerian method in cylindrical geometry , 2011 .
[18] Pascal J. Frey,et al. Fast Adaptive Quadtree Mesh Generation , 1998, IMR.
[19] W. Bo and M. Shashkov. R-Adaptive Reconnection-based Arbitrary Lagrangian Eulerian Method-R-ReALE , 2015 .
[20] P. Gruber,et al. Optimum Quantization and Its Applications , 2004 .
[21] J. MacQueen. Some methods for classification and analysis of multivariate observations , 1967 .
[22] Jérôme Breil,et al. A multi-material ReALE method with MOF interface reconstruction , 2013 .
[23] Bruno Després,et al. A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..
[24] Robert D. Russell,et al. Adaptivity with moving grids , 2009, Acta Numerica.
[25] E. Dorfi,et al. Simple adaptive grids for 1-d initial value problems , 1987 .
[26] Ralph R. Martin,et al. Improved initialisation for centroidal Voronoi tessellation and optimal Delaunay triangulation , 2012, Comput. Aided Des..
[27] Raphaël Loubère,et al. ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method , 2010, J. Comput. Phys..
[28] François Vilar,et al. A high-order Discontinuous Galerkin discretization for solving two-dimensional Lagrangian hydrodynamics , 2012 .
[29] C Thompson,et al. Applied CFD techniques: An introduction based on finite element methods , 2002 .
[30] Pierre Alliez,et al. 2D Centroidal Voronoi Tessellations with Constraints , 2010 .
[31] Qiang Du,et al. Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations , 2002, Parallel Comput..
[32] Qiang Du,et al. Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..
[33] Max Gunzburger,et al. Constrained CVT meshes and a comparison of triangular mesh generators , 2009, Comput. Geom..
[34] Chenglei Yang,et al. On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.
[35] J. N. Johnson,et al. A new parallel algorithm for constructing Voronoi tessellations from distributed input data , 2014, Comput. Phys. Commun..
[36] Mikhail Shashkov,et al. The Error-Minimization-Based Strategy for Moving Mesh Methods , 2006 .
[37] Rémi Abgrall,et al. A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..
[38] Jeffrey Grandy. Conservative Remapping and Region Overlays by Intersecting Arbitrary Polyhedra , 1999 .
[39] Weidong Zhao,et al. Adaptive Finite Element Methods for Elliptic PDEs Based on Conforming Centroidal Voronoi-Delaunay Triangulations , 2006, SIAM J. Sci. Comput..
[40] R. Löhner. An adaptive finite element scheme for transient problems in CFD , 1987 .
[41] Jérôme Breil,et al. A swept‐intersection‐based remapping method in a ReALE framework , 2013 .
[42] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[43] Tamal K. Dey,et al. Delaunay Mesh Generation , 2012, Chapman and Hall / CRC computer and information science series.
[44] Tao Tang,et al. Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..
[45] Robert D. Russell,et al. Adaptive Moving Mesh Methods , 2010 .
[46] Atsuyuki Okabe,et al. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.