Paraoxonase 1 overexpression in mice and its effect on high-density lipoproteins.

Paraoxonase (PON1) is a high-density lipoprotein (HDL)-associated enzyme believed to protect against the early events of atherogenesis by its ability to hydrolyze oxidized phospholipids. A transgenic mouse overexpressing PON1 (mPON1) was developed to address the question of whether overexpression of PON1 is important in protecting HDL function during oxidative stress. Transgenic mice were obtained that have up to a 5-fold increase in mPON1 activity measured as arylesterase activity [52.7 +/- 17.3 U/ml versus 251.7 +/- 25.1 U/ml for wild-type (WT) and mPON1 high expressers, respectively]; this increase in mPON1 activity was reflected by a 5.3-fold increase in relative mass of the enzyme. Excess mPON1 was associated solely with HDL but did not alter HDL composition, size, or charge. Lecithin:cholesterol acyltransferase (LCAT) on HDL is a sensitive indicator of oxidative stress; exposure of plasmas from both WT and mPON1 overexpresser mice to 0.4 mM copper ions for 2 h showed a 30-40% protection of LCAT activity in mPON1 overexpressers compared to WT. Excess mPON1 also inhibited lipid hydroperoxide formation on HDL. These data strongly suggest that overexpression of mPON1 protects HDL integrity and function.

[1]  R. Krauss,et al.  Altered activities of anti-atherogenic enzymes LCAT, paraoxonase, and platelet-activating factor acetylhydrolase in atherosclerosis-susceptible mice. , 2002, Journal of lipid research.

[2]  D. Shih,et al.  HDL and the inflammatory response induced by LDL-derived oxidized phospholipids. , 2001, Arteriosclerosis, thrombosis, and vascular biology.

[3]  J. Mcneish,et al.  The Correlation of ATP-binding Cassette 1 mRNA Levels with Cholesterol Efflux from Various Cell Lines* , 2000, The Journal of Biological Chemistry.

[4]  S. Reddy,et al.  Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1. , 2000, Journal of lipid research.

[5]  A. Vaughan,et al.  ABCA1-mediated transport of cellular cholesterol and phospholipids to HDL apolipoproteins. , 2000, Current opinion in lipidology.

[6]  T. Langmann,et al.  The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease , 1999, Nature Genetics.

[7]  T. Forte,et al.  Evidence that lipid hydroperoxides inhibit plasma lecithin:cholesterol acyltransferase activity. , 1999, Journal of lipid research.

[8]  B. La Du,et al.  Paraoxonase active site required for protection against LDL oxidation involves its free sulfhydryl group and is different from that required for its arylesterase/paraoxonase activities: selective action of human paraoxonase allozymes Q and R. , 1998, Arteriosclerosis, thrombosis, and vascular biology.

[9]  D. Shih,et al.  Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis , 1998, Nature.

[10]  B. La Du,et al.  Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. , 1998, The Journal of clinical investigation.

[11]  A. Lusis,et al.  Overexpression of apolipoprotein AII in transgenic mice converts high density lipoproteins to proinflammatory particles. , 1997, The Journal of clinical investigation.

[12]  Wei Sha,et al.  Structural Identification by Mass Spectrometry of Oxidized Phospholipids in Minimally Oxidized Low Density Lipoprotein That Induce Monocyte/Endothelial Interactions and Evidence for Their Presence in Vivo * , 1997, The Journal of Biological Chemistry.

[13]  G. Fonarow,et al.  Mildly oxidized LDL induces an increased apolipoprotein J/paraoxonase ratio. , 1997, The Journal of clinical investigation.

[14]  B. La Du,et al.  The human serum paraoxonase/arylesterase gene (PON1) is one member of a multigene family. , 1996, Genomics.

[15]  T. Forte,et al.  Minimally oxidized LDL is a potent inhibitor of lecithin:cholesterol acyltransferase activity. , 1996, Journal of lipid research.

[16]  D. Shih,et al.  Genetic-dietary regulation of serum paraoxonase expression and its role in atherogenesis in a mouse model. , 1996, The Journal of clinical investigation.

[17]  J. Berliner,et al.  Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. , 1995, The Journal of clinical investigation.

[18]  P. Durrington,et al.  HDL, its enzymes and its potential to influence lipid peroxidation , 1995 .

[19]  F. Kuypers,et al.  Copper and gas-phase cigarette smoke inhibit plasma lecithin:cholesterol acyltransferase activity by different mechanisms. , 1995, Journal of lipid research.

[20]  C. Abbott,et al.  Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase. , 1993, Atherosclerosis.

[21]  R. Stocker,et al.  High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[22]  P. Winocour,et al.  Serum paraoxonase activity in familial hypercholesterolaemia and insulin-dependent diabetes mellitus. , 1991, Atherosclerosis.

[23]  A. Smolen,et al.  Purification of human serum paraoxonase/arylesterase. Evidence for one esterase catalyzing both activities. , 1991, Drug metabolism and disposition: the biological fate of chemicals.

[24]  C. Walker,et al.  Distribution of paraoxon hydrolytic activity in the serum of patients after myocardial infarction. , 1986, Clinical chemistry.

[25]  R. Krauss,et al.  Nondenaturing polyacrylamide gradient gel electrophoresis. , 1986, Methods in enzymology.

[26]  J. Albers,et al.  Characterization of proteoliposomes containing apoprotein A-I: a new substrate for the measurement of lecithin: cholesterol acyltransferase activity. , 1982, Journal of lipid research.

[27]  F H Ruddle,et al.  Genetic transformation of mouse embryos by microinjection of purified DNA. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[28]  W. Kalow Pharmacogenetics of drug metabolism , 1980 .

[29]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.