Pyroliton: pyroelectric spatial soliton.

The concept of optical beam self-trapping in pyroelectric photorefractive medium is presented. We show that the temperature controlled spontaneous polarisation of ferroelectric crystals produces an optical nonlinearity that can lead to formation of 2-D spatial soliton named pyroliton. Experimental demonstrations performed in lithium niobate crystals illustrate that efficient self-trapping occurs either for ordinary or extraordinary polarisation under moderate temperature increase. For instance, a 15 microm diameter pyroliton can be formed with a 10 degree temperature raise.

[1]  V. Anderson,et al.  Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[2]  Cornelia Denz,et al.  Anomalous interaction of spatial solitons in photorefractive media , 1998, Nonlinear Guided Waves and Their Applications.

[3]  Yaron Danon,et al.  Nuclear reactions induced by a pyroelectric accelerator. , 2006, Physical review letters.

[4]  Alain Barthélémy,et al.  Propagation soliton et auto-confinement de faisceaux laser par non linéarité optique de Kerr , 1985 .

[5]  J. Gray Consciousness on the scientific agenda , 1992, Nature.

[6]  C. van Trigt Visual system-response functions and estimating reflectance. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  F. Devaux,et al.  New time-dependent photorefractive three-dimensional model : application to self-trapped beam with large bending , 2008 .

[8]  A. Savage,et al.  Pyroelectricity and Spontaneous Polarization in LiNbO3 , 1966 .

[9]  Wieslaw Krolikowski,et al.  Spatial solitons in optically induced gratings. , 2003, Optics letters.

[10]  K. Buse,et al.  Pyroelectric coefficients of LiNbO3 crystals of different compositions , 1994 .

[11]  M Segev,et al.  Waveguides formed by quasi-steady-state photorefractive spatial solitons. , 1995, Optics letters.

[12]  James D. Brownridge,et al.  Pyroelectric X-ray generator , 1992, Nature.

[13]  F. Devaux,et al.  Polarization and configuration dependence of beam self-focusing in photorefractive LiNbO 3 , 2009 .

[14]  Koshiba,et al.  Multidimensional solitons in quadratic nonlinear media. , 1993, Physical review letters.

[15]  W. Ramadan,et al.  Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides , 2004 .

[16]  M. Aillerie,et al.  Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals , 2008 .

[17]  Charles H. Townes,et al.  Self-trapping of optical beams , 1964 .

[18]  M. Segev,et al.  Optically induced photovoltaic self-defocusing-to-self-focusing transition. , 1998, Optics letters.

[19]  Karsten Buse,et al.  The bulk photovoltaic effect of photorefractive :Fe crystals at high light intensities , 1997 .

[20]  C. V. Trigt Visual system-response functions and estimating reflectance , 1997 .

[21]  M. Segev,et al.  Steady-state spatial screening solitons in photorefractive materials with external applied field. , 1994, Physical review letters.

[22]  Iam-Choon Khoo,et al.  Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells , 2000 .

[23]  G. Montemezzani,et al.  Charge Carrier Photoexcitation and Two-Wave Mixing in Dichroic Materials , 1997 .

[24]  Sharp,et al.  Observation of self-trapping of an optical beam due to the photorefractive effect. , 1993, Physical review letters.

[25]  Fejer,et al.  Observation of dark photovoltaic spatial solitons. , 1995, Physical review. A, Atomic, molecular, and optical physics.