Crosstalk between three-dimensional plasmonic slot waveguides

We investigate in detail the crosstalk between three-dimensional plasmonic slot waveguides. We show that, with appropriate design, the crosstalk between such waveguides can be greatly reduced, without significantly affecting their modal size and attenuation length.

[1]  S. Al-bader,et al.  Optical transmission on metallic wires-fundamental modes , 2004, IEEE Journal of Quantum Electronics.

[2]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[3]  C. Kunz,et al.  Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al 2 O 3 , 1975 .

[4]  Bernhard Lamprecht,et al.  Non?diffraction-limited light transport by gold nanowires , 2002 .

[5]  Masahiro Tanaka,et al.  Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide , 2003 .

[6]  Peter B Catrysse,et al.  Geometries and materials for subwavelength surface plasmon modes. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  G. Veronis,et al.  Modes of Subwavelength Plasmonic Slot Waveguides , 2007, Journal of Lightwave Technology.

[8]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[9]  M. Orenstein,et al.  Modeling of Complementary (Void) Plasmon Waveguiding , 2007, Journal of Lightwave Technology.

[10]  Harry A. Atwater,et al.  Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit , 2000 .

[11]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[12]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[13]  Shanhui Fan,et al.  Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides , 2005 .

[14]  Ning-Ning Feng,et al.  Metal–Dielectric Slot-Waveguide Structures for the Propagation of Surface Plasmon Polaritons at 1.55 $\mu{\hbox {m}}$ , 2007, IEEE Journal of Quantum Electronics.

[15]  R. Kaul,et al.  Microwave engineering , 1989, IEEE Potentials.

[16]  J. Pereda,et al.  An improved compact 2D full‐wave FDFD method for general guided wave structures , 2003 .

[17]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[18]  A. Morimoto,et al.  Guiding of a one-dimensional optical beam with nanometer diameter. , 1997, Optics letters.

[19]  G. Veronis,et al.  Guided subwavelength plasmonic mode supported by a slot in a thin metal film. , 2005, Optics letters.

[20]  Sailing He,et al.  Novel surface plasmon waveguide for high integration. , 2005, Optics express.

[21]  T. Ebbesen,et al.  Channel plasmon-polariton guiding by subwavelength metal grooves. , 2005, Physical review letters.

[22]  Junichi Takahara,et al.  Propagation properties of guided waves in index-guided two-dimensional optical waveguides , 2005 .

[23]  Jean-Claude Weeber,et al.  Plasmon polaritons of metallic nanowires for controlling submicron propagation of light , 1999 .

[24]  C. Kunz,et al.  Optical Constants from the Far Infrared to the x-Ray Region: Mg, Al, Cu, Ag, Au, Bi, C, and Aluminum Oxide , 1974 .

[25]  D. Pile,et al.  Two-dimensionally localized modes of a nanoscale gap plasmon waveguide , 2005 .

[26]  P. Yeh,et al.  Photonics : optical electronics in modern communications , 2006 .